opencv/modules/contrib/src/bowmsctrainer.cpp
Andrey Kamaev 2a6fb2867e Remove all using directives for STL namespace and members
Made all STL usages explicit to be able automatically find all usages of
particular class or function.
2013-02-25 15:04:17 +04:00

140 lines
4.9 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
// This file originates from the openFABMAP project:
// [http://code.google.com/p/openfabmap/]
//
// For published work which uses all or part of OpenFABMAP, please cite:
// [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6224843]
//
// Original Algorithm by Mark Cummins and Paul Newman:
// [http://ijr.sagepub.com/content/27/6/647.short]
// [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5613942]
// [http://ijr.sagepub.com/content/30/9/1100.abstract]
//
// License Agreement
//
// Copyright (C) 2012 Arren Glover [aj.glover@qut.edu.au] and
// Will Maddern [w.maddern@qut.edu.au], all rights reserved.
//
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencv2/contrib/openfabmap.hpp"
namespace cv {
namespace of2 {
BOWMSCTrainer::BOWMSCTrainer(double _clusterSize) :
clusterSize(_clusterSize) {
}
BOWMSCTrainer::~BOWMSCTrainer() {
}
Mat BOWMSCTrainer::cluster() const {
CV_Assert(!descriptors.empty());
int descCount = 0;
for(size_t i = 0; i < descriptors.size(); i++)
descCount += descriptors[i].rows;
Mat mergedDescriptors(descCount, descriptors[0].cols,
descriptors[0].type());
for(size_t i = 0, start = 0; i < descriptors.size(); i++)
{
Mat submut = mergedDescriptors.rowRange((int)start,
(int)(start + descriptors[i].rows));
descriptors[i].copyTo(submut);
start += descriptors[i].rows;
}
return cluster(mergedDescriptors);
}
Mat BOWMSCTrainer::cluster(const Mat& _descriptors) const {
CV_Assert(!_descriptors.empty());
// TODO: sort the descriptors before clustering.
Mat icovar = Mat::eye(_descriptors.cols,_descriptors.cols,_descriptors.type());
std::vector<Mat> initialCentres;
initialCentres.push_back(_descriptors.row(0));
for (int i = 1; i < _descriptors.rows; i++) {
double minDist = DBL_MAX;
for (size_t j = 0; j < initialCentres.size(); j++) {
minDist = std::min(minDist,
cv::Mahalanobis(_descriptors.row(i),initialCentres[j],
icovar));
}
if (minDist > clusterSize)
initialCentres.push_back(_descriptors.row(i));
}
std::vector<std::list<cv::Mat> > clusters;
clusters.resize(initialCentres.size());
for (int i = 0; i < _descriptors.rows; i++) {
int index = 0; double dist = 0, minDist = DBL_MAX;
for (size_t j = 0; j < initialCentres.size(); j++) {
dist = cv::Mahalanobis(_descriptors.row(i),initialCentres[j],icovar);
if (dist < minDist) {
minDist = dist;
index = (int)j;
}
}
clusters[index].push_back(_descriptors.row(i));
}
// TODO: throw away small clusters.
Mat vocabulary;
Mat centre = Mat::zeros(1,_descriptors.cols,_descriptors.type());
for (size_t i = 0; i < clusters.size(); i++) {
centre.setTo(0);
for (std::list<cv::Mat>::iterator Ci = clusters[i].begin(); Ci != clusters[i].end(); Ci++) {
centre += *Ci;
}
centre /= (double)clusters[i].size();
vocabulary.push_back(centre);
}
return vocabulary;
}
}
}