mirror of
https://github.com/opencv/opencv.git
synced 2024-12-11 14:39:11 +08:00
109 lines
3.0 KiB
C++
109 lines
3.0 KiB
C++
#include <opencv2/gpu.hpp>
|
|
#include <opencv2/softcascade.hpp>
|
|
#include <opencv2/highgui.hpp>
|
|
#include <iostream>
|
|
|
|
typedef cv::softcascade::Detection Detection;
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
const std::string keys =
|
|
"{help h usage ? | | print this message }"
|
|
"{cascade c | | path to configuration xml }"
|
|
"{frames f | | path to configuration xml }"
|
|
"{min_scale |0.4f | path to configuration xml }"
|
|
"{max_scale |5.0f | path to configuration xml }"
|
|
"{total_scales |55 | path to configuration xml }"
|
|
"{device d |0 | path to configuration xml }"
|
|
;
|
|
|
|
cv::CommandLineParser parser(argc, argv, keys);
|
|
parser.about("Soft cascade training application.");
|
|
|
|
if (parser.has("help"))
|
|
{
|
|
parser.printMessage();
|
|
return 0;
|
|
}
|
|
|
|
if (!parser.check())
|
|
{
|
|
parser.printErrors();
|
|
return 1;
|
|
}
|
|
|
|
cv::gpu::setDevice(parser.get<int>("device"));
|
|
|
|
std::string cascadePath = parser.get<std::string>("cascade");
|
|
|
|
cv::FileStorage fs(cascadePath, cv::FileStorage::READ);
|
|
if(!fs.isOpened())
|
|
{
|
|
std::cout << "Soft Cascade file " << cascadePath << " can't be opened." << std::endl << std::flush;
|
|
return 1;
|
|
}
|
|
|
|
std::cout << "Read cascade from file " << cascadePath << std::endl;
|
|
|
|
float minScale = parser.get<float>("min_scale");
|
|
float maxScale = parser.get<float>("max_scale");
|
|
int scales = parser.get<int>("total_scales");
|
|
|
|
using cv::softcascade::SCascade;
|
|
SCascade cascade(minScale, maxScale, scales);
|
|
|
|
if (!cascade.load(fs.getFirstTopLevelNode()))
|
|
{
|
|
std::cout << "Soft Cascade can't be parsed." << std::endl << std::flush;
|
|
return 1;
|
|
}
|
|
|
|
std::string frames = parser.get<std::string>("frames");
|
|
cv::VideoCapture capture(frames);
|
|
if(!capture.isOpened())
|
|
{
|
|
std::cout << "Frame source " << frames << " can't be opened." << std::endl << std::flush;
|
|
return 1;
|
|
}
|
|
|
|
cv::gpu::GpuMat objects(1, sizeof(Detection) * 10000, CV_8UC1);
|
|
cv::gpu::printShortCudaDeviceInfo(parser.get<int>("device"));
|
|
for (;;)
|
|
{
|
|
cv::Mat frame;
|
|
if (!capture.read(frame))
|
|
{
|
|
std::cout << "Nothing to read. " << std::endl << std::flush;
|
|
return 0;
|
|
}
|
|
|
|
cv::gpu::GpuMat dframe(frame), roi(frame.rows, frame.cols, CV_8UC1);
|
|
roi.setTo(cv::Scalar::all(1));
|
|
cascade.detect(dframe, roi, objects);
|
|
|
|
cv::Mat dt(objects);
|
|
|
|
Detection* dts = ((Detection*)dt.data) + 1;
|
|
int* count = dt.ptr<int>(0);
|
|
|
|
std::cout << *count << std::endl;
|
|
|
|
cv::Mat result;
|
|
frame.copyTo(result);
|
|
|
|
|
|
for (int i = 0; i < *count; ++i)
|
|
{
|
|
Detection d = dts[i];
|
|
cv::rectangle(result, cv::Rect(d.x, d.y, d.w, d.h), cv::Scalar(255, 0, 0, 255), 1);
|
|
}
|
|
|
|
std::cout << "working..." << std::endl;
|
|
cv::imshow("Soft Cascade demo", result);
|
|
if (27 == cv::waitKey(10))
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|