mirror of
https://github.com/opencv/opencv.git
synced 2025-08-01 10:26:53 +08:00

Added clapack * bring a small subset of Lapack, automatically converted to C, into OpenCV * added missing lsame_ prototype * * small fix in make_clapack script * trying to fix remaining CI problems * fixed character arrays' initializers * get rid of F2C_STR_MAX * * added back single-precision versions for QR, LU and Cholesky decompositions. It adds very little extra overhead. * added stub version of sdesdd. * uncommented calls to all the single-precision Lapack functions from opencv/core/src/hal_internal.cpp. * fixed warning from Visual Studio + cleaned f2c runtime a bit * * regenerated Lapack w/o forward declarations of intrinsic functions (such as sqrt(), r_cnjg() etc.) * at once, trailing whitespaces are removed from the generated sources, just in case * since there is no declarations of intrinsic functions anymore, we could turn some of them into inline functions * trying to eliminate the crash on ARM * fixed API and semantics of s_copy * * CLapack has been tested successfully. It's now time to restore the standard LAPACK detection procedure * removed some more trailing whitespaces * * retained only the essential stuff in CLapack * added checks to lapack calls to gracefully return "not implemented" instead of returning invalid results with "ok" status * disabled warning when building lapack * cmake: update LAPACK detection Co-authored-by: Alexander Alekhin <alexander.a.alekhin@gmail.com>
572 lines
15 KiB
C
572 lines
15 KiB
C
/* -- translated by f2c (version 20201020 (for_lapack)). -- */
|
|
|
|
#include "f2c.h"
|
|
|
|
//> \brief \b DORG2R generates all or part of the orthogonal matrix Q from a QR factorization determined by sgeqrf (unblocked algorithm).
|
|
//
|
|
// =========== DOCUMENTATION ===========
|
|
//
|
|
// Online html documentation available at
|
|
// http://www.netlib.org/lapack/explore-html/
|
|
//
|
|
//> \htmlonly
|
|
//> Download DORG2R + dependencies
|
|
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorg2r.f">
|
|
//> [TGZ]</a>
|
|
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorg2r.f">
|
|
//> [ZIP]</a>
|
|
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorg2r.f">
|
|
//> [TXT]</a>
|
|
//> \endhtmlonly
|
|
//
|
|
// Definition:
|
|
// ===========
|
|
//
|
|
// SUBROUTINE DORG2R( M, N, K, A, LDA, TAU, WORK, INFO )
|
|
//
|
|
// .. Scalar Arguments ..
|
|
// INTEGER INFO, K, LDA, M, N
|
|
// ..
|
|
// .. Array Arguments ..
|
|
// DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
|
|
// ..
|
|
//
|
|
//
|
|
//> \par Purpose:
|
|
// =============
|
|
//>
|
|
//> \verbatim
|
|
//>
|
|
//> DORG2R generates an m by n real matrix Q with orthonormal columns,
|
|
//> which is defined as the first n columns of a product of k elementary
|
|
//> reflectors of order m
|
|
//>
|
|
//> Q = H(1) H(2) . . . H(k)
|
|
//>
|
|
//> as returned by DGEQRF.
|
|
//> \endverbatim
|
|
//
|
|
// Arguments:
|
|
// ==========
|
|
//
|
|
//> \param[in] M
|
|
//> \verbatim
|
|
//> M is INTEGER
|
|
//> The number of rows of the matrix Q. M >= 0.
|
|
//> \endverbatim
|
|
//>
|
|
//> \param[in] N
|
|
//> \verbatim
|
|
//> N is INTEGER
|
|
//> The number of columns of the matrix Q. M >= N >= 0.
|
|
//> \endverbatim
|
|
//>
|
|
//> \param[in] K
|
|
//> \verbatim
|
|
//> K is INTEGER
|
|
//> The number of elementary reflectors whose product defines the
|
|
//> matrix Q. N >= K >= 0.
|
|
//> \endverbatim
|
|
//>
|
|
//> \param[in,out] A
|
|
//> \verbatim
|
|
//> A is DOUBLE PRECISION array, dimension (LDA,N)
|
|
//> On entry, the i-th column must contain the vector which
|
|
//> defines the elementary reflector H(i), for i = 1,2,...,k, as
|
|
//> returned by DGEQRF in the first k columns of its array
|
|
//> argument A.
|
|
//> On exit, the m-by-n matrix Q.
|
|
//> \endverbatim
|
|
//>
|
|
//> \param[in] LDA
|
|
//> \verbatim
|
|
//> LDA is INTEGER
|
|
//> The first dimension of the array A. LDA >= max(1,M).
|
|
//> \endverbatim
|
|
//>
|
|
//> \param[in] TAU
|
|
//> \verbatim
|
|
//> TAU is DOUBLE PRECISION array, dimension (K)
|
|
//> TAU(i) must contain the scalar factor of the elementary
|
|
//> reflector H(i), as returned by DGEQRF.
|
|
//> \endverbatim
|
|
//>
|
|
//> \param[out] WORK
|
|
//> \verbatim
|
|
//> WORK is DOUBLE PRECISION array, dimension (N)
|
|
//> \endverbatim
|
|
//>
|
|
//> \param[out] INFO
|
|
//> \verbatim
|
|
//> INFO is INTEGER
|
|
//> = 0: successful exit
|
|
//> < 0: if INFO = -i, the i-th argument has an illegal value
|
|
//> \endverbatim
|
|
//
|
|
// Authors:
|
|
// ========
|
|
//
|
|
//> \author Univ. of Tennessee
|
|
//> \author Univ. of California Berkeley
|
|
//> \author Univ. of Colorado Denver
|
|
//> \author NAG Ltd.
|
|
//
|
|
//> \date December 2016
|
|
//
|
|
//> \ingroup doubleOTHERcomputational
|
|
//
|
|
// =====================================================================
|
|
/* Subroutine */ int dorg2r_(int *m, int *n, int *k, double *a, int *lda,
|
|
double *tau, double *work, int *info)
|
|
{
|
|
// Table of constant values
|
|
int c__1 = 1;
|
|
|
|
// System generated locals
|
|
int a_dim1, a_offset, i__1, i__2;
|
|
double d__1;
|
|
|
|
// Local variables
|
|
int i__, j, l;
|
|
extern /* Subroutine */ int dscal_(int *, double *, double *, int *),
|
|
dlarf_(char *, int *, int *, double *, int *, double *, double *,
|
|
int *, double *), xerbla_(char *, int *);
|
|
|
|
//
|
|
// -- LAPACK computational routine (version 3.7.0) --
|
|
// -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
// -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
// December 2016
|
|
//
|
|
// .. Scalar Arguments ..
|
|
// ..
|
|
// .. Array Arguments ..
|
|
// ..
|
|
//
|
|
// =====================================================================
|
|
//
|
|
// .. Parameters ..
|
|
// ..
|
|
// .. Local Scalars ..
|
|
// ..
|
|
// .. External Subroutines ..
|
|
// ..
|
|
// .. Intrinsic Functions ..
|
|
// ..
|
|
// .. Executable Statements ..
|
|
//
|
|
// Test the input arguments
|
|
//
|
|
// Parameter adjustments
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
--tau;
|
|
--work;
|
|
|
|
// Function Body
|
|
*info = 0;
|
|
if (*m < 0) {
|
|
*info = -1;
|
|
} else if (*n < 0 || *n > *m) {
|
|
*info = -2;
|
|
} else if (*k < 0 || *k > *n) {
|
|
*info = -3;
|
|
} else if (*lda < max(1,*m)) {
|
|
*info = -5;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("DORG2R", &i__1);
|
|
return 0;
|
|
}
|
|
//
|
|
// Quick return if possible
|
|
//
|
|
if (*n <= 0) {
|
|
return 0;
|
|
}
|
|
//
|
|
// Initialise columns k+1:n to columns of the unit matrix
|
|
//
|
|
i__1 = *n;
|
|
for (j = *k + 1; j <= i__1; ++j) {
|
|
i__2 = *m;
|
|
for (l = 1; l <= i__2; ++l) {
|
|
a[l + j * a_dim1] = 0.;
|
|
// L10:
|
|
}
|
|
a[j + j * a_dim1] = 1.;
|
|
// L20:
|
|
}
|
|
for (i__ = *k; i__ >= 1; --i__) {
|
|
//
|
|
// Apply H(i) to A(i:m,i:n) from the left
|
|
//
|
|
if (i__ < *n) {
|
|
a[i__ + i__ * a_dim1] = 1.;
|
|
i__1 = *m - i__ + 1;
|
|
i__2 = *n - i__;
|
|
dlarf_("Left", &i__1, &i__2, &a[i__ + i__ * a_dim1], &c__1, &tau[
|
|
i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]);
|
|
}
|
|
if (i__ < *m) {
|
|
i__1 = *m - i__;
|
|
d__1 = -tau[i__];
|
|
dscal_(&i__1, &d__1, &a[i__ + 1 + i__ * a_dim1], &c__1);
|
|
}
|
|
a[i__ + i__ * a_dim1] = 1. - tau[i__];
|
|
//
|
|
// Set A(1:i-1,i) to zero
|
|
//
|
|
i__1 = i__ - 1;
|
|
for (l = 1; l <= i__1; ++l) {
|
|
a[l + i__ * a_dim1] = 0.;
|
|
// L30:
|
|
}
|
|
// L40:
|
|
}
|
|
return 0;
|
|
//
|
|
// End of DORG2R
|
|
//
|
|
} // dorg2r_
|
|
|
|
/* -- translated by f2c (version 20201020 (for_lapack)). -- */
|
|
|
|
//> \brief \b DORGQR
|
|
//
|
|
// =========== DOCUMENTATION ===========
|
|
//
|
|
// Online html documentation available at
|
|
// http://www.netlib.org/lapack/explore-html/
|
|
//
|
|
//> \htmlonly
|
|
//> Download DORGQR + dependencies
|
|
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorgqr.f">
|
|
//> [TGZ]</a>
|
|
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorgqr.f">
|
|
//> [ZIP]</a>
|
|
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorgqr.f">
|
|
//> [TXT]</a>
|
|
//> \endhtmlonly
|
|
//
|
|
// Definition:
|
|
// ===========
|
|
//
|
|
// SUBROUTINE DORGQR( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
|
|
//
|
|
// .. Scalar Arguments ..
|
|
// INTEGER INFO, K, LDA, LWORK, M, N
|
|
// ..
|
|
// .. Array Arguments ..
|
|
// DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
|
|
// ..
|
|
//
|
|
//
|
|
//> \par Purpose:
|
|
// =============
|
|
//>
|
|
//> \verbatim
|
|
//>
|
|
//> DORGQR generates an M-by-N real matrix Q with orthonormal columns,
|
|
//> which is defined as the first N columns of a product of K elementary
|
|
//> reflectors of order M
|
|
//>
|
|
//> Q = H(1) H(2) . . . H(k)
|
|
//>
|
|
//> as returned by DGEQRF.
|
|
//> \endverbatim
|
|
//
|
|
// Arguments:
|
|
// ==========
|
|
//
|
|
//> \param[in] M
|
|
//> \verbatim
|
|
//> M is INTEGER
|
|
//> The number of rows of the matrix Q. M >= 0.
|
|
//> \endverbatim
|
|
//>
|
|
//> \param[in] N
|
|
//> \verbatim
|
|
//> N is INTEGER
|
|
//> The number of columns of the matrix Q. M >= N >= 0.
|
|
//> \endverbatim
|
|
//>
|
|
//> \param[in] K
|
|
//> \verbatim
|
|
//> K is INTEGER
|
|
//> The number of elementary reflectors whose product defines the
|
|
//> matrix Q. N >= K >= 0.
|
|
//> \endverbatim
|
|
//>
|
|
//> \param[in,out] A
|
|
//> \verbatim
|
|
//> A is DOUBLE PRECISION array, dimension (LDA,N)
|
|
//> On entry, the i-th column must contain the vector which
|
|
//> defines the elementary reflector H(i), for i = 1,2,...,k, as
|
|
//> returned by DGEQRF in the first k columns of its array
|
|
//> argument A.
|
|
//> On exit, the M-by-N matrix Q.
|
|
//> \endverbatim
|
|
//>
|
|
//> \param[in] LDA
|
|
//> \verbatim
|
|
//> LDA is INTEGER
|
|
//> The first dimension of the array A. LDA >= max(1,M).
|
|
//> \endverbatim
|
|
//>
|
|
//> \param[in] TAU
|
|
//> \verbatim
|
|
//> TAU is DOUBLE PRECISION array, dimension (K)
|
|
//> TAU(i) must contain the scalar factor of the elementary
|
|
//> reflector H(i), as returned by DGEQRF.
|
|
//> \endverbatim
|
|
//>
|
|
//> \param[out] WORK
|
|
//> \verbatim
|
|
//> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
|
//> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
|
//> \endverbatim
|
|
//>
|
|
//> \param[in] LWORK
|
|
//> \verbatim
|
|
//> LWORK is INTEGER
|
|
//> The dimension of the array WORK. LWORK >= max(1,N).
|
|
//> For optimum performance LWORK >= N*NB, where NB is the
|
|
//> optimal blocksize.
|
|
//>
|
|
//> If LWORK = -1, then a workspace query is assumed; the routine
|
|
//> only calculates the optimal size of the WORK array, returns
|
|
//> this value as the first entry of the WORK array, and no error
|
|
//> message related to LWORK is issued by XERBLA.
|
|
//> \endverbatim
|
|
//>
|
|
//> \param[out] INFO
|
|
//> \verbatim
|
|
//> INFO is INTEGER
|
|
//> = 0: successful exit
|
|
//> < 0: if INFO = -i, the i-th argument has an illegal value
|
|
//> \endverbatim
|
|
//
|
|
// Authors:
|
|
// ========
|
|
//
|
|
//> \author Univ. of Tennessee
|
|
//> \author Univ. of California Berkeley
|
|
//> \author Univ. of Colorado Denver
|
|
//> \author NAG Ltd.
|
|
//
|
|
//> \date December 2016
|
|
//
|
|
//> \ingroup doubleOTHERcomputational
|
|
//
|
|
// =====================================================================
|
|
/* Subroutine */ int dorgqr_(int *m, int *n, int *k, double *a, int *lda,
|
|
double *tau, double *work, int *lwork, int *info)
|
|
{
|
|
// Table of constant values
|
|
int c__1 = 1;
|
|
int c_n1 = -1;
|
|
int c__3 = 3;
|
|
int c__2 = 2;
|
|
|
|
// System generated locals
|
|
int a_dim1, a_offset, i__1, i__2, i__3;
|
|
|
|
// Local variables
|
|
int i__, j, l, ib, nb, ki, kk, nx, iws, nbmin, iinfo;
|
|
extern /* Subroutine */ int dorg2r_(int *, int *, int *, double *, int *,
|
|
double *, double *, int *), dlarfb_(char *, char *, char *, char *
|
|
, int *, int *, int *, double *, int *, double *, int *, double *,
|
|
int *, double *, int *), dlarft_(char *, char *, int *, int *,
|
|
double *, int *, double *, double *, int *), xerbla_(char *, int *
|
|
);
|
|
extern int ilaenv_(int *, char *, char *, int *, int *, int *, int *);
|
|
int ldwork, lwkopt;
|
|
int lquery;
|
|
|
|
//
|
|
// -- LAPACK computational routine (version 3.7.0) --
|
|
// -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
// -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
// December 2016
|
|
//
|
|
// .. Scalar Arguments ..
|
|
// ..
|
|
// .. Array Arguments ..
|
|
// ..
|
|
//
|
|
// =====================================================================
|
|
//
|
|
// .. Parameters ..
|
|
// ..
|
|
// .. Local Scalars ..
|
|
// ..
|
|
// .. External Subroutines ..
|
|
// ..
|
|
// .. Intrinsic Functions ..
|
|
// ..
|
|
// .. External Functions ..
|
|
// ..
|
|
// .. Executable Statements ..
|
|
//
|
|
// Test the input arguments
|
|
//
|
|
// Parameter adjustments
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
--tau;
|
|
--work;
|
|
|
|
// Function Body
|
|
*info = 0;
|
|
nb = ilaenv_(&c__1, "DORGQR", " ", m, n, k, &c_n1);
|
|
lwkopt = max(1,*n) * nb;
|
|
work[1] = (double) lwkopt;
|
|
lquery = *lwork == -1;
|
|
if (*m < 0) {
|
|
*info = -1;
|
|
} else if (*n < 0 || *n > *m) {
|
|
*info = -2;
|
|
} else if (*k < 0 || *k > *n) {
|
|
*info = -3;
|
|
} else if (*lda < max(1,*m)) {
|
|
*info = -5;
|
|
} else if (*lwork < max(1,*n) && ! lquery) {
|
|
*info = -8;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("DORGQR", &i__1);
|
|
return 0;
|
|
} else if (lquery) {
|
|
return 0;
|
|
}
|
|
//
|
|
// Quick return if possible
|
|
//
|
|
if (*n <= 0) {
|
|
work[1] = 1.;
|
|
return 0;
|
|
}
|
|
nbmin = 2;
|
|
nx = 0;
|
|
iws = *n;
|
|
if (nb > 1 && nb < *k) {
|
|
//
|
|
// Determine when to cross over from blocked to unblocked code.
|
|
//
|
|
// Computing MAX
|
|
i__1 = 0, i__2 = ilaenv_(&c__3, "DORGQR", " ", m, n, k, &c_n1);
|
|
nx = max(i__1,i__2);
|
|
if (nx < *k) {
|
|
//
|
|
// Determine if workspace is large enough for blocked code.
|
|
//
|
|
ldwork = *n;
|
|
iws = ldwork * nb;
|
|
if (*lwork < iws) {
|
|
//
|
|
// Not enough workspace to use optimal NB: reduce NB and
|
|
// determine the minimum value of NB.
|
|
//
|
|
nb = *lwork / ldwork;
|
|
// Computing MAX
|
|
i__1 = 2, i__2 = ilaenv_(&c__2, "DORGQR", " ", m, n, k, &c_n1)
|
|
;
|
|
nbmin = max(i__1,i__2);
|
|
}
|
|
}
|
|
}
|
|
if (nb >= nbmin && nb < *k && nx < *k) {
|
|
//
|
|
// Use blocked code after the last block.
|
|
// The first kk columns are handled by the block method.
|
|
//
|
|
ki = (*k - nx - 1) / nb * nb;
|
|
// Computing MIN
|
|
i__1 = *k, i__2 = ki + nb;
|
|
kk = min(i__1,i__2);
|
|
//
|
|
// Set A(1:kk,kk+1:n) to zero.
|
|
//
|
|
i__1 = *n;
|
|
for (j = kk + 1; j <= i__1; ++j) {
|
|
i__2 = kk;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
a[i__ + j * a_dim1] = 0.;
|
|
// L10:
|
|
}
|
|
// L20:
|
|
}
|
|
} else {
|
|
kk = 0;
|
|
}
|
|
//
|
|
// Use unblocked code for the last or only block.
|
|
//
|
|
if (kk < *n) {
|
|
i__1 = *m - kk;
|
|
i__2 = *n - kk;
|
|
i__3 = *k - kk;
|
|
dorg2r_(&i__1, &i__2, &i__3, &a[kk + 1 + (kk + 1) * a_dim1], lda, &
|
|
tau[kk + 1], &work[1], &iinfo);
|
|
}
|
|
if (kk > 0) {
|
|
//
|
|
// Use blocked code
|
|
//
|
|
i__1 = -nb;
|
|
for (i__ = ki + 1; i__1 < 0 ? i__ >= 1 : i__ <= 1; i__ += i__1) {
|
|
// Computing MIN
|
|
i__2 = nb, i__3 = *k - i__ + 1;
|
|
ib = min(i__2,i__3);
|
|
if (i__ + ib <= *n) {
|
|
//
|
|
// Form the triangular factor of the block reflector
|
|
// H = H(i) H(i+1) . . . H(i+ib-1)
|
|
//
|
|
i__2 = *m - i__ + 1;
|
|
dlarft_("Forward", "Columnwise", &i__2, &ib, &a[i__ + i__ *
|
|
a_dim1], lda, &tau[i__], &work[1], &ldwork);
|
|
//
|
|
// Apply H to A(i:m,i+ib:n) from the left
|
|
//
|
|
i__2 = *m - i__ + 1;
|
|
i__3 = *n - i__ - ib + 1;
|
|
dlarfb_("Left", "No transpose", "Forward", "Columnwise", &
|
|
i__2, &i__3, &ib, &a[i__ + i__ * a_dim1], lda, &work[
|
|
1], &ldwork, &a[i__ + (i__ + ib) * a_dim1], lda, &
|
|
work[ib + 1], &ldwork);
|
|
}
|
|
//
|
|
// Apply H to rows i:m of current block
|
|
//
|
|
i__2 = *m - i__ + 1;
|
|
dorg2r_(&i__2, &ib, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &
|
|
work[1], &iinfo);
|
|
//
|
|
// Set rows 1:i-1 of current block to zero
|
|
//
|
|
i__2 = i__ + ib - 1;
|
|
for (j = i__; j <= i__2; ++j) {
|
|
i__3 = i__ - 1;
|
|
for (l = 1; l <= i__3; ++l) {
|
|
a[l + j * a_dim1] = 0.;
|
|
// L30:
|
|
}
|
|
// L40:
|
|
}
|
|
// L50:
|
|
}
|
|
}
|
|
work[1] = (double) iws;
|
|
return 0;
|
|
//
|
|
// End of DORGQR
|
|
//
|
|
} // dorgqr_
|
|
|