opencv/3rdparty/clapack/src/dorgqr.c
Vadim Pisarevsky 2ee9d21dae
Merge pull request #18571 from vpisarev:add_lapack
Added clapack

* bring a small subset of Lapack, automatically converted to C, into OpenCV

* added missing lsame_ prototype

* * small fix in make_clapack script
* trying to fix remaining CI problems

* fixed character arrays' initializers

* get rid of F2C_STR_MAX

* * added back single-precision versions for QR, LU and Cholesky decompositions. It adds very little extra overhead.
* added stub version of sdesdd.
* uncommented calls to all the single-precision Lapack functions from opencv/core/src/hal_internal.cpp.

* fixed warning from Visual Studio + cleaned f2c runtime a bit

* * regenerated Lapack w/o forward declarations of intrinsic functions (such as sqrt(), r_cnjg() etc.)
* at once, trailing whitespaces are removed from the generated sources, just in case
* since there is no declarations of intrinsic functions anymore, we could turn some of them into inline functions

* trying to eliminate the crash on ARM

* fixed API and semantics of s_copy

* * CLapack has been tested successfully. It's now time to restore the standard LAPACK detection procedure
* removed some more trailing whitespaces

* * retained only the essential stuff in CLapack
* added checks to lapack calls to gracefully return "not implemented" instead of returning invalid results with "ok" status

* disabled warning when building lapack

* cmake: update LAPACK detection

Co-authored-by: Alexander Alekhin <alexander.a.alekhin@gmail.com>
2020-11-05 21:46:51 +00:00

572 lines
15 KiB
C

/* -- translated by f2c (version 20201020 (for_lapack)). -- */
#include "f2c.h"
//> \brief \b DORG2R generates all or part of the orthogonal matrix Q from a QR factorization determined by sgeqrf (unblocked algorithm).
//
// =========== DOCUMENTATION ===========
//
// Online html documentation available at
// http://www.netlib.org/lapack/explore-html/
//
//> \htmlonly
//> Download DORG2R + dependencies
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorg2r.f">
//> [TGZ]</a>
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorg2r.f">
//> [ZIP]</a>
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorg2r.f">
//> [TXT]</a>
//> \endhtmlonly
//
// Definition:
// ===========
//
// SUBROUTINE DORG2R( M, N, K, A, LDA, TAU, WORK, INFO )
//
// .. Scalar Arguments ..
// INTEGER INFO, K, LDA, M, N
// ..
// .. Array Arguments ..
// DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
// ..
//
//
//> \par Purpose:
// =============
//>
//> \verbatim
//>
//> DORG2R generates an m by n real matrix Q with orthonormal columns,
//> which is defined as the first n columns of a product of k elementary
//> reflectors of order m
//>
//> Q = H(1) H(2) . . . H(k)
//>
//> as returned by DGEQRF.
//> \endverbatim
//
// Arguments:
// ==========
//
//> \param[in] M
//> \verbatim
//> M is INTEGER
//> The number of rows of the matrix Q. M >= 0.
//> \endverbatim
//>
//> \param[in] N
//> \verbatim
//> N is INTEGER
//> The number of columns of the matrix Q. M >= N >= 0.
//> \endverbatim
//>
//> \param[in] K
//> \verbatim
//> K is INTEGER
//> The number of elementary reflectors whose product defines the
//> matrix Q. N >= K >= 0.
//> \endverbatim
//>
//> \param[in,out] A
//> \verbatim
//> A is DOUBLE PRECISION array, dimension (LDA,N)
//> On entry, the i-th column must contain the vector which
//> defines the elementary reflector H(i), for i = 1,2,...,k, as
//> returned by DGEQRF in the first k columns of its array
//> argument A.
//> On exit, the m-by-n matrix Q.
//> \endverbatim
//>
//> \param[in] LDA
//> \verbatim
//> LDA is INTEGER
//> The first dimension of the array A. LDA >= max(1,M).
//> \endverbatim
//>
//> \param[in] TAU
//> \verbatim
//> TAU is DOUBLE PRECISION array, dimension (K)
//> TAU(i) must contain the scalar factor of the elementary
//> reflector H(i), as returned by DGEQRF.
//> \endverbatim
//>
//> \param[out] WORK
//> \verbatim
//> WORK is DOUBLE PRECISION array, dimension (N)
//> \endverbatim
//>
//> \param[out] INFO
//> \verbatim
//> INFO is INTEGER
//> = 0: successful exit
//> < 0: if INFO = -i, the i-th argument has an illegal value
//> \endverbatim
//
// Authors:
// ========
//
//> \author Univ. of Tennessee
//> \author Univ. of California Berkeley
//> \author Univ. of Colorado Denver
//> \author NAG Ltd.
//
//> \date December 2016
//
//> \ingroup doubleOTHERcomputational
//
// =====================================================================
/* Subroutine */ int dorg2r_(int *m, int *n, int *k, double *a, int *lda,
double *tau, double *work, int *info)
{
// Table of constant values
int c__1 = 1;
// System generated locals
int a_dim1, a_offset, i__1, i__2;
double d__1;
// Local variables
int i__, j, l;
extern /* Subroutine */ int dscal_(int *, double *, double *, int *),
dlarf_(char *, int *, int *, double *, int *, double *, double *,
int *, double *), xerbla_(char *, int *);
//
// -- LAPACK computational routine (version 3.7.0) --
// -- LAPACK is a software package provided by Univ. of Tennessee, --
// -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
// December 2016
//
// .. Scalar Arguments ..
// ..
// .. Array Arguments ..
// ..
//
// =====================================================================
//
// .. Parameters ..
// ..
// .. Local Scalars ..
// ..
// .. External Subroutines ..
// ..
// .. Intrinsic Functions ..
// ..
// .. Executable Statements ..
//
// Test the input arguments
//
// Parameter adjustments
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
--work;
// Function Body
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < 0 || *n > *m) {
*info = -2;
} else if (*k < 0 || *k > *n) {
*info = -3;
} else if (*lda < max(1,*m)) {
*info = -5;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DORG2R", &i__1);
return 0;
}
//
// Quick return if possible
//
if (*n <= 0) {
return 0;
}
//
// Initialise columns k+1:n to columns of the unit matrix
//
i__1 = *n;
for (j = *k + 1; j <= i__1; ++j) {
i__2 = *m;
for (l = 1; l <= i__2; ++l) {
a[l + j * a_dim1] = 0.;
// L10:
}
a[j + j * a_dim1] = 1.;
// L20:
}
for (i__ = *k; i__ >= 1; --i__) {
//
// Apply H(i) to A(i:m,i:n) from the left
//
if (i__ < *n) {
a[i__ + i__ * a_dim1] = 1.;
i__1 = *m - i__ + 1;
i__2 = *n - i__;
dlarf_("Left", &i__1, &i__2, &a[i__ + i__ * a_dim1], &c__1, &tau[
i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]);
}
if (i__ < *m) {
i__1 = *m - i__;
d__1 = -tau[i__];
dscal_(&i__1, &d__1, &a[i__ + 1 + i__ * a_dim1], &c__1);
}
a[i__ + i__ * a_dim1] = 1. - tau[i__];
//
// Set A(1:i-1,i) to zero
//
i__1 = i__ - 1;
for (l = 1; l <= i__1; ++l) {
a[l + i__ * a_dim1] = 0.;
// L30:
}
// L40:
}
return 0;
//
// End of DORG2R
//
} // dorg2r_
/* -- translated by f2c (version 20201020 (for_lapack)). -- */
//> \brief \b DORGQR
//
// =========== DOCUMENTATION ===========
//
// Online html documentation available at
// http://www.netlib.org/lapack/explore-html/
//
//> \htmlonly
//> Download DORGQR + dependencies
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorgqr.f">
//> [TGZ]</a>
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorgqr.f">
//> [ZIP]</a>
//> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorgqr.f">
//> [TXT]</a>
//> \endhtmlonly
//
// Definition:
// ===========
//
// SUBROUTINE DORGQR( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
//
// .. Scalar Arguments ..
// INTEGER INFO, K, LDA, LWORK, M, N
// ..
// .. Array Arguments ..
// DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
// ..
//
//
//> \par Purpose:
// =============
//>
//> \verbatim
//>
//> DORGQR generates an M-by-N real matrix Q with orthonormal columns,
//> which is defined as the first N columns of a product of K elementary
//> reflectors of order M
//>
//> Q = H(1) H(2) . . . H(k)
//>
//> as returned by DGEQRF.
//> \endverbatim
//
// Arguments:
// ==========
//
//> \param[in] M
//> \verbatim
//> M is INTEGER
//> The number of rows of the matrix Q. M >= 0.
//> \endverbatim
//>
//> \param[in] N
//> \verbatim
//> N is INTEGER
//> The number of columns of the matrix Q. M >= N >= 0.
//> \endverbatim
//>
//> \param[in] K
//> \verbatim
//> K is INTEGER
//> The number of elementary reflectors whose product defines the
//> matrix Q. N >= K >= 0.
//> \endverbatim
//>
//> \param[in,out] A
//> \verbatim
//> A is DOUBLE PRECISION array, dimension (LDA,N)
//> On entry, the i-th column must contain the vector which
//> defines the elementary reflector H(i), for i = 1,2,...,k, as
//> returned by DGEQRF in the first k columns of its array
//> argument A.
//> On exit, the M-by-N matrix Q.
//> \endverbatim
//>
//> \param[in] LDA
//> \verbatim
//> LDA is INTEGER
//> The first dimension of the array A. LDA >= max(1,M).
//> \endverbatim
//>
//> \param[in] TAU
//> \verbatim
//> TAU is DOUBLE PRECISION array, dimension (K)
//> TAU(i) must contain the scalar factor of the elementary
//> reflector H(i), as returned by DGEQRF.
//> \endverbatim
//>
//> \param[out] WORK
//> \verbatim
//> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
//> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
//> \endverbatim
//>
//> \param[in] LWORK
//> \verbatim
//> LWORK is INTEGER
//> The dimension of the array WORK. LWORK >= max(1,N).
//> For optimum performance LWORK >= N*NB, where NB is the
//> optimal blocksize.
//>
//> If LWORK = -1, then a workspace query is assumed; the routine
//> only calculates the optimal size of the WORK array, returns
//> this value as the first entry of the WORK array, and no error
//> message related to LWORK is issued by XERBLA.
//> \endverbatim
//>
//> \param[out] INFO
//> \verbatim
//> INFO is INTEGER
//> = 0: successful exit
//> < 0: if INFO = -i, the i-th argument has an illegal value
//> \endverbatim
//
// Authors:
// ========
//
//> \author Univ. of Tennessee
//> \author Univ. of California Berkeley
//> \author Univ. of Colorado Denver
//> \author NAG Ltd.
//
//> \date December 2016
//
//> \ingroup doubleOTHERcomputational
//
// =====================================================================
/* Subroutine */ int dorgqr_(int *m, int *n, int *k, double *a, int *lda,
double *tau, double *work, int *lwork, int *info)
{
// Table of constant values
int c__1 = 1;
int c_n1 = -1;
int c__3 = 3;
int c__2 = 2;
// System generated locals
int a_dim1, a_offset, i__1, i__2, i__3;
// Local variables
int i__, j, l, ib, nb, ki, kk, nx, iws, nbmin, iinfo;
extern /* Subroutine */ int dorg2r_(int *, int *, int *, double *, int *,
double *, double *, int *), dlarfb_(char *, char *, char *, char *
, int *, int *, int *, double *, int *, double *, int *, double *,
int *, double *, int *), dlarft_(char *, char *, int *, int *,
double *, int *, double *, double *, int *), xerbla_(char *, int *
);
extern int ilaenv_(int *, char *, char *, int *, int *, int *, int *);
int ldwork, lwkopt;
int lquery;
//
// -- LAPACK computational routine (version 3.7.0) --
// -- LAPACK is a software package provided by Univ. of Tennessee, --
// -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
// December 2016
//
// .. Scalar Arguments ..
// ..
// .. Array Arguments ..
// ..
//
// =====================================================================
//
// .. Parameters ..
// ..
// .. Local Scalars ..
// ..
// .. External Subroutines ..
// ..
// .. Intrinsic Functions ..
// ..
// .. External Functions ..
// ..
// .. Executable Statements ..
//
// Test the input arguments
//
// Parameter adjustments
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
--work;
// Function Body
*info = 0;
nb = ilaenv_(&c__1, "DORGQR", " ", m, n, k, &c_n1);
lwkopt = max(1,*n) * nb;
work[1] = (double) lwkopt;
lquery = *lwork == -1;
if (*m < 0) {
*info = -1;
} else if (*n < 0 || *n > *m) {
*info = -2;
} else if (*k < 0 || *k > *n) {
*info = -3;
} else if (*lda < max(1,*m)) {
*info = -5;
} else if (*lwork < max(1,*n) && ! lquery) {
*info = -8;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DORGQR", &i__1);
return 0;
} else if (lquery) {
return 0;
}
//
// Quick return if possible
//
if (*n <= 0) {
work[1] = 1.;
return 0;
}
nbmin = 2;
nx = 0;
iws = *n;
if (nb > 1 && nb < *k) {
//
// Determine when to cross over from blocked to unblocked code.
//
// Computing MAX
i__1 = 0, i__2 = ilaenv_(&c__3, "DORGQR", " ", m, n, k, &c_n1);
nx = max(i__1,i__2);
if (nx < *k) {
//
// Determine if workspace is large enough for blocked code.
//
ldwork = *n;
iws = ldwork * nb;
if (*lwork < iws) {
//
// Not enough workspace to use optimal NB: reduce NB and
// determine the minimum value of NB.
//
nb = *lwork / ldwork;
// Computing MAX
i__1 = 2, i__2 = ilaenv_(&c__2, "DORGQR", " ", m, n, k, &c_n1)
;
nbmin = max(i__1,i__2);
}
}
}
if (nb >= nbmin && nb < *k && nx < *k) {
//
// Use blocked code after the last block.
// The first kk columns are handled by the block method.
//
ki = (*k - nx - 1) / nb * nb;
// Computing MIN
i__1 = *k, i__2 = ki + nb;
kk = min(i__1,i__2);
//
// Set A(1:kk,kk+1:n) to zero.
//
i__1 = *n;
for (j = kk + 1; j <= i__1; ++j) {
i__2 = kk;
for (i__ = 1; i__ <= i__2; ++i__) {
a[i__ + j * a_dim1] = 0.;
// L10:
}
// L20:
}
} else {
kk = 0;
}
//
// Use unblocked code for the last or only block.
//
if (kk < *n) {
i__1 = *m - kk;
i__2 = *n - kk;
i__3 = *k - kk;
dorg2r_(&i__1, &i__2, &i__3, &a[kk + 1 + (kk + 1) * a_dim1], lda, &
tau[kk + 1], &work[1], &iinfo);
}
if (kk > 0) {
//
// Use blocked code
//
i__1 = -nb;
for (i__ = ki + 1; i__1 < 0 ? i__ >= 1 : i__ <= 1; i__ += i__1) {
// Computing MIN
i__2 = nb, i__3 = *k - i__ + 1;
ib = min(i__2,i__3);
if (i__ + ib <= *n) {
//
// Form the triangular factor of the block reflector
// H = H(i) H(i+1) . . . H(i+ib-1)
//
i__2 = *m - i__ + 1;
dlarft_("Forward", "Columnwise", &i__2, &ib, &a[i__ + i__ *
a_dim1], lda, &tau[i__], &work[1], &ldwork);
//
// Apply H to A(i:m,i+ib:n) from the left
//
i__2 = *m - i__ + 1;
i__3 = *n - i__ - ib + 1;
dlarfb_("Left", "No transpose", "Forward", "Columnwise", &
i__2, &i__3, &ib, &a[i__ + i__ * a_dim1], lda, &work[
1], &ldwork, &a[i__ + (i__ + ib) * a_dim1], lda, &
work[ib + 1], &ldwork);
}
//
// Apply H to rows i:m of current block
//
i__2 = *m - i__ + 1;
dorg2r_(&i__2, &ib, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &
work[1], &iinfo);
//
// Set rows 1:i-1 of current block to zero
//
i__2 = i__ + ib - 1;
for (j = i__; j <= i__2; ++j) {
i__3 = i__ - 1;
for (l = 1; l <= i__3; ++l) {
a[l + j * a_dim1] = 0.;
// L30:
}
// L40:
}
// L50:
}
}
work[1] = (double) iws;
return 0;
//
// End of DORGQR
//
} // dorgqr_