mirror of
https://github.com/opencv/opencv.git
synced 2024-11-27 04:36:36 +08:00
342 lines
15 KiB
C++
342 lines
15 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html
|
|
|
|
#include "opencv2/calib3d.hpp"
|
|
#include "opencv2/highgui.hpp"
|
|
#include "opencv2/imgproc.hpp"
|
|
|
|
#include <vector>
|
|
#include <iostream>
|
|
#include <fstream>
|
|
|
|
using namespace cv;
|
|
static double getError2EpipLines (const Mat &F, const Mat &pts1, const Mat &pts2, const Mat &mask) {
|
|
Mat points1, points2;
|
|
vconcat(pts1, Mat::ones(1, pts1.cols, pts1.type()), points1);
|
|
vconcat(pts2, Mat::ones(1, pts2.cols, pts2.type()), points2);
|
|
|
|
double mean_error = 0;
|
|
for (int pt = 0; pt < (int) mask.total(); pt++)
|
|
if (mask.at<uchar>(pt)) {
|
|
const Mat l2 = F * points1.col(pt);
|
|
const Mat l1 = F.t() * points2.col(pt);
|
|
mean_error += (fabs(points1.col(pt).dot(l1)) / sqrt(pow(l1.at<double>(0), 2) + pow(l1.at<double>(1), 2)) +
|
|
fabs(points2.col(pt).dot(l2) / sqrt(pow(l2.at<double>(0), 2) + pow(l2.at<double>(1), 2)))) / 2;
|
|
}
|
|
return mean_error / mask.total();
|
|
}
|
|
static int sgn(double val) { return (0 < val) - (val < 0); }
|
|
|
|
/*
|
|
* @points3d - vector of Point3 or Mat of size Nx3
|
|
* @planes - vector of found planes
|
|
* @labels - vector of size point3d. Every point which has non-zero label is classified to this plane.
|
|
*/
|
|
static void getPlanes (InputArray points3d_, std::vector<int> &labels, std::vector<Vec4d> &planes, int desired_num_planes, double thr_, double conf_, int max_iters_) {
|
|
Mat points3d = points3d_.getMat();
|
|
points3d.convertTo(points3d, CV_64F); // convert points to have double precision
|
|
if (points3d_.isVector())
|
|
points3d = Mat((int)points3d.total(), 3, CV_64F, points3d.data);
|
|
else {
|
|
if (points3d.type() != CV_64F)
|
|
points3d = points3d.reshape(1, (int)points3d.total()); // convert point to have 1 channel
|
|
if (points3d.rows < points3d.cols)
|
|
transpose(points3d, points3d); // transpose so points will be in rows
|
|
CV_CheckEQ(points3d.cols, 3, "Invalid dimension of point");
|
|
}
|
|
|
|
/*
|
|
* 3D plane fitting with RANSAC
|
|
* @best_model contains coefficients [a b c d] s.t. ax + by + cz = d
|
|
*
|
|
*/
|
|
auto plane_ransac = [] (const Mat &pts, double thr, double conf, int max_iters, Vec4d &best_model, std::vector<bool> &inliers) {
|
|
const int pts_size = pts.rows, max_lo_inliers = 15, max_lo_iters = 10;
|
|
int best_inls = 0;
|
|
if (pts_size < 3) return false;
|
|
RNG rng;
|
|
const auto * const points = (double *) pts.data;
|
|
std::vector<int> min_sample(3);
|
|
inliers = std::vector<bool>(pts_size);
|
|
const double log_conf = log(1-conf);
|
|
Vec4d model, lo_model;
|
|
std::vector<int> random_pool (pts_size);
|
|
for (int p = 0; p < pts_size; p++)
|
|
random_pool[p] = p;
|
|
|
|
// estimate plane coefficients using covariance matrix
|
|
auto estimate = [&] (const std::vector<int> &sample, Vec4d &model_) {
|
|
// https://www.ilikebigbits.com/2017_09_25_plane_from_points_2.html
|
|
const int n = static_cast<int>(sample.size());
|
|
if (n < 3) return false;
|
|
double sum_x = 0, sum_y = 0, sum_z = 0;
|
|
for (int s : sample) {
|
|
sum_x += points[3*s ];
|
|
sum_y += points[3*s+1];
|
|
sum_z += points[3*s+2];
|
|
}
|
|
const double c_x = sum_x / n, c_y = sum_y / n, c_z = sum_z / n;
|
|
double xx = 0, yy = 0, zz = 0, xy = 0, xz = 0, yz = 0;
|
|
for (int s : sample) {
|
|
const double x_ = points[3*s] - c_x, y_ = points[3*s+1] - c_y, z_ = points[3*s+2] - c_z;
|
|
xx += x_*x_; yy += y_*y_; zz += z_*z_; xy = x_*y_; yz += y_*z_; xz += x_*z_;
|
|
}
|
|
xx /= n; yy /= n; zz /= n; xy /= n; yz /= n; xz /= n;
|
|
Vec3d weighted_normal(0,0,0);
|
|
const double det_x = yy*zz - yz*yz, det_y = xx*zz - xz*xz, det_z = xx*yy - xy*xy;
|
|
Vec3d axis_x (det_x, xz*xz-xy*zz, xy*yz-xz*yy);
|
|
Vec3d axis_y (xz*yz-xy*zz, det_y, xy*xz-yz*xx);
|
|
Vec3d axis_z (xy*yz-xz*yy, xy*xz-yz*xx, det_z);
|
|
weighted_normal += axis_x * det_x * det_x;
|
|
weighted_normal += sgn(weighted_normal.dot(axis_y)) * axis_y * det_y * det_y;
|
|
weighted_normal += sgn(weighted_normal.dot(axis_z)) * axis_z * det_z * det_z;
|
|
weighted_normal /= norm(weighted_normal);
|
|
if (std::isinf(weighted_normal(0)) ||
|
|
std::isinf(weighted_normal(1)) ||
|
|
std::isinf(weighted_normal(2))) return false;
|
|
// find plane model from normal and centroid
|
|
model_ = Vec4d(weighted_normal(0), weighted_normal(1), weighted_normal(2),
|
|
weighted_normal.dot(Vec3d(c_x, c_y, c_z)));
|
|
return true;
|
|
};
|
|
|
|
// calculate number of inliers
|
|
auto getInliers = [&] (const Vec4d &model_) {
|
|
const double a = model_(0), b = model_(1), c = model_(2), d = model_(3);
|
|
int num_inliers = 0;
|
|
std::fill(inliers.begin(), inliers.end(), false);
|
|
for (int p = 0; p < pts_size; p++) {
|
|
inliers[p] = fabs(a * points[3*p] + b * points[3*p+1] + c * points[3*p+2] - d) < thr;
|
|
if (inliers[p]) num_inliers++;
|
|
if (num_inliers + pts_size - p < best_inls) break;
|
|
}
|
|
return num_inliers;
|
|
};
|
|
// main RANSAC loop
|
|
for (int iters = 0; iters < max_iters; iters++) {
|
|
// find minimal sample: 3 points
|
|
min_sample[0] = rng.uniform(0, pts_size);
|
|
min_sample[1] = rng.uniform(0, pts_size);
|
|
min_sample[2] = rng.uniform(0, pts_size);
|
|
if (! estimate(min_sample, model))
|
|
continue;
|
|
int num_inliers = getInliers(model);
|
|
if (num_inliers > best_inls) {
|
|
// store so-far-the-best
|
|
std::vector<bool> best_inliers = inliers;
|
|
// do Local Optimization
|
|
for (int lo_iter = 0; lo_iter < max_lo_iters; lo_iter++) {
|
|
std::vector<int> inliers_idx; inliers_idx.reserve(max_lo_inliers);
|
|
randShuffle(random_pool);
|
|
for (int p : random_pool) {
|
|
if (best_inliers[p]) {
|
|
inliers_idx.emplace_back(p);
|
|
if ((int)inliers_idx.size() >= max_lo_inliers)
|
|
break;
|
|
}
|
|
}
|
|
if (! estimate(inliers_idx, lo_model))
|
|
continue;
|
|
int lo_inls = getInliers(lo_model);
|
|
if (best_inls < lo_inls) {
|
|
best_model = lo_model;
|
|
best_inls = lo_inls;
|
|
best_inliers = inliers;
|
|
}
|
|
}
|
|
if (best_inls < num_inliers) {
|
|
best_model = model;
|
|
best_inls = num_inliers;
|
|
}
|
|
// update max iters
|
|
// because points are quite noisy we need more iterations
|
|
const double max_hyp = 3 * log_conf / log(1 - pow(double(best_inls) / pts_size, 3));
|
|
if (! std::isinf(max_hyp) && max_hyp < max_iters)
|
|
max_iters = static_cast<int>(max_hyp);
|
|
}
|
|
}
|
|
getInliers(best_model);
|
|
return best_inls != 0;
|
|
};
|
|
|
|
labels = std::vector<int>(points3d.rows, 0);
|
|
Mat pts3d_plane_fit = points3d.clone();
|
|
// keep array of indices of points corresponding to original points3d
|
|
std::vector<int> to_orig_pts_arr(pts3d_plane_fit.rows);
|
|
for (int i = 0; i < (int) to_orig_pts_arr.size(); i++)
|
|
to_orig_pts_arr[i] = i;
|
|
for (int num_planes = 1; num_planes <= desired_num_planes; num_planes++) {
|
|
Vec4d model;
|
|
std::vector<bool> inl;
|
|
if (!plane_ransac(pts3d_plane_fit, thr_, conf_, max_iters_, model, inl))
|
|
break;
|
|
planes.emplace_back(model);
|
|
|
|
const int pts3d_size = pts3d_plane_fit.rows;
|
|
pts3d_plane_fit = Mat();
|
|
pts3d_plane_fit.reserve(points3d.rows);
|
|
|
|
int cnt = 0;
|
|
for (int p = 0; p < pts3d_size; p++) {
|
|
if (! inl[p]) {
|
|
// if point is not inlier to found plane - add it to next run
|
|
to_orig_pts_arr[cnt] = to_orig_pts_arr[p];
|
|
pts3d_plane_fit.push_back(points3d.row(to_orig_pts_arr[cnt]));
|
|
cnt++;
|
|
} else labels[to_orig_pts_arr[p]] = num_planes; // otherwise label this point
|
|
}
|
|
}
|
|
}
|
|
|
|
int main(int args, char** argv) {
|
|
std::string data_file, image_dir;
|
|
if (args < 3) {
|
|
CV_Error(Error::StsBadArg,
|
|
"Path to data file and directory to image files are missing!\nData file must have"
|
|
" format:\n--------------\n image_name_1\nimage_name_2\nk11 k12 k13\n0 k22 k23\n"
|
|
"0 0 1\n--------------\nIf image_name_{1,2} are not in the same directory as "
|
|
"the data file then add argument with directory to image files.\nFor example: "
|
|
"./essential_mat_reconstr essential_mat_data.txt ./");
|
|
} else {
|
|
data_file = argv[1];
|
|
image_dir = argv[2];
|
|
}
|
|
std::ifstream file(data_file, std::ios_base::in);
|
|
CV_CheckEQ((int)file.is_open(), 1, "Data file is not found!");
|
|
std::string filename1, filename2;
|
|
std::getline(file, filename1);
|
|
std::getline(file, filename2);
|
|
Mat image1 = imread(image_dir+filename1);
|
|
Mat image2 = imread(image_dir+filename2);
|
|
CV_CheckEQ((int)image1.empty(), 0, "Image 1 is not found!");
|
|
CV_CheckEQ((int)image2.empty(), 0, "Image 2 is not found!");
|
|
|
|
// read calibration
|
|
Matx33d K;
|
|
for (int i = 0; i < 3; i++)
|
|
for (int j = 0; j < 3; j++)
|
|
file >> K(i,j);
|
|
file.close();
|
|
|
|
Mat descriptors1, descriptors2;
|
|
std::vector<KeyPoint> keypoints1, keypoints2;
|
|
|
|
// detect points with SIFT
|
|
Ptr<SIFT> detector = SIFT::create();
|
|
detector->detect(image1, keypoints1);
|
|
detector->detect(image2, keypoints2);
|
|
detector->compute(image1, keypoints1, descriptors1);
|
|
detector->compute(image2, keypoints2, descriptors2);
|
|
|
|
FlannBasedMatcher matcher(makePtr<flann::KDTreeIndexParams>(5), makePtr<flann::SearchParams>(32));
|
|
|
|
// get k=2 best match that we can apply ratio test explained by D.Lowe
|
|
std::vector<std::vector<DMatch>> matches_vector;
|
|
matcher.knnMatch(descriptors1, descriptors2, matches_vector, 2);
|
|
|
|
// filter keypoints with Lowe ratio test
|
|
std::vector<Point2d> pts1, pts2;
|
|
pts1.reserve(matches_vector.size()); pts2.reserve(matches_vector.size());
|
|
for (const auto &m : matches_vector) {
|
|
// compare best and second match using Lowe ratio test
|
|
if (m[0].distance / m[1].distance < 0.75) {
|
|
pts1.emplace_back(keypoints1[m[0].queryIdx].pt);
|
|
pts2.emplace_back(keypoints2[m[0].trainIdx].pt);
|
|
}
|
|
}
|
|
|
|
Mat inliers;
|
|
const int pts_size = (int) pts1.size();
|
|
const auto begin_time = std::chrono::steady_clock::now();
|
|
// fine essential matrix
|
|
const Mat E = findEssentialMat(pts1, pts2, Mat(K), RANSAC, 0.99, 1.0, inliers);
|
|
std::cout << "RANSAC essential matrix time " << std::chrono::duration_cast<std::chrono::microseconds>
|
|
(std::chrono::steady_clock::now() - begin_time).count() <<
|
|
"mcs.\nNumber of inliers " << countNonZero(inliers) << "\n";
|
|
|
|
Mat points1 = Mat((int)pts1.size(), 2, CV_64F, pts1.data());
|
|
Mat points2 = Mat((int)pts2.size(), 2, CV_64F, pts2.data());
|
|
points1 = points1.t(); points2 = points2.t();
|
|
|
|
std::cout << "Mean error to epipolar lines " <<
|
|
getError2EpipLines(K.inv().t() * E * K.inv(), points1, points2, inliers) << "\n";
|
|
|
|
// decompose essential into rotation and translation
|
|
Mat R1, R2, t;
|
|
decomposeEssentialMat(E, R1, R2, t);
|
|
|
|
// Create two relative pose
|
|
// P1 = K [ I | 0 ]
|
|
// P2 = K [R{1,2} | {+-}t]
|
|
Mat P1;
|
|
hconcat(K, Vec3d::zeros(), P1);
|
|
std::vector<Mat> P2s(4);
|
|
hconcat(K * R1, K * t, P2s[0]);
|
|
hconcat(K * R1, -K * t, P2s[1]);
|
|
hconcat(K * R2, K * t, P2s[2]);
|
|
hconcat(K * R2, -K * t, P2s[3]);
|
|
|
|
// find objects point by enumerating over 4 different projection matrices of second camera
|
|
// vector to keep object points
|
|
std::vector<std::vector<Vec3d>> obj_pts_per_cam(4);
|
|
// vector to keep indices of image points corresponding to object points
|
|
std::vector<std::vector<int>> img_idxs_per_cam(4);
|
|
int cam_idx = 0, best_cam_idx = 0, max_obj_pts = 0;
|
|
for (const auto &P2 : P2s) {
|
|
obj_pts_per_cam[cam_idx].reserve(pts_size);
|
|
img_idxs_per_cam[cam_idx].reserve(pts_size);
|
|
for (int i = 0; i < pts_size; i++) {
|
|
// process only inliers
|
|
if (! inliers.at<uchar>(i))
|
|
continue;
|
|
|
|
Vec4d obj_pt;
|
|
// find object point using triangulation
|
|
triangulatePoints(P1, P2, points1.col(i), points2.col(i), obj_pt);
|
|
obj_pt /= obj_pt(3); // normalize 4d point
|
|
if (obj_pt(2) > 0) { // check if projected point has positive depth
|
|
obj_pts_per_cam[cam_idx].emplace_back(Vec3d(obj_pt(0), obj_pt(1), obj_pt(2)));
|
|
img_idxs_per_cam[cam_idx].emplace_back(i);
|
|
}
|
|
}
|
|
if (max_obj_pts < (int) obj_pts_per_cam[cam_idx].size()) {
|
|
max_obj_pts = (int) obj_pts_per_cam[cam_idx].size();
|
|
best_cam_idx = cam_idx;
|
|
}
|
|
cam_idx++;
|
|
}
|
|
|
|
std::cout << "Number of object points " << max_obj_pts << "\n";
|
|
|
|
const int circle_sz = 7;
|
|
// draw image points that are inliers on two images
|
|
std::vector<int> labels;
|
|
std::vector<Vec4d> planes;
|
|
getPlanes (obj_pts_per_cam[best_cam_idx], labels, planes, 4, 0.002, 0.99, 10000);
|
|
const int num_found_planes = (int) planes.size();
|
|
RNG rng;
|
|
std::vector<Scalar> plane_colors (num_found_planes);
|
|
for (int pl = 0; pl < num_found_planes; pl++)
|
|
plane_colors[pl] = Scalar (rng.uniform(0,256), rng.uniform(0,256), rng.uniform(0,256));
|
|
for (int obj_pt = 0; obj_pt < max_obj_pts; obj_pt++) {
|
|
const int pt = img_idxs_per_cam[best_cam_idx][obj_pt];
|
|
if (labels[obj_pt] > 0) { // plot plane points
|
|
circle (image1, pts1[pt], circle_sz, plane_colors[labels[obj_pt]-1], -1);
|
|
circle (image2, pts2[pt], circle_sz, plane_colors[labels[obj_pt]-1], -1);
|
|
} else { // plot inliers
|
|
circle (image1, pts1[pt], circle_sz, Scalar(0,0,0), -1);
|
|
circle (image2, pts2[pt], circle_sz, Scalar(0,0,0), -1);
|
|
}
|
|
}
|
|
|
|
// concatenate two images
|
|
hconcat(image1, image2, image1);
|
|
const int new_img_size = 1200 * 800; // for example
|
|
// resize with the same aspect ratio
|
|
resize(image1, image1, Size((int)sqrt ((double) image1.cols * new_img_size / image1.rows),
|
|
(int)sqrt ((double) image1.rows * new_img_size / image1.cols)));
|
|
imshow("image 1-2", image1);
|
|
imwrite("planes.png", image1);
|
|
waitKey(0);
|
|
} |