opencv/modules/dnn/perf/perf_net.cpp
Lubov Batanina 7d3d6bc4e2 Merge pull request #13932 from l-bat:MyriadX_master_dldt
* Fix precision in tests for MyriadX

* Fix ONNX tests

* Add output range in ONNX tests

* Skip tests on Myriad OpenVINO 2018R5

* Add detect MyriadX

* Add detect MyriadX on OpenVINO R5

* Skip tests on Myriad next version of OpenVINO

* dnn(ie): VPU type from environment variable

* dnn(test): validate VPU type

* dnn(test): update DLIE test skip conditions
2019-03-29 16:42:58 +03:00

237 lines
8.3 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "perf_precomp.hpp"
#include "opencv2/core/ocl.hpp"
#include "opencv2/dnn/shape_utils.hpp"
#include "../test/test_common.hpp"
namespace opencv_test {
class DNNTestNetwork : public ::perf::TestBaseWithParam< tuple<Backend, Target> >
{
public:
dnn::Backend backend;
dnn::Target target;
dnn::Net net;
DNNTestNetwork()
{
backend = (dnn::Backend)(int)get<0>(GetParam());
target = (dnn::Target)(int)get<1>(GetParam());
}
void processNet(std::string weights, std::string proto, std::string halide_scheduler,
const Mat& input, const std::string& outputLayer = "")
{
randu(input, 0.0f, 1.0f);
weights = findDataFile(weights, false);
if (!proto.empty())
proto = findDataFile(proto, false);
if (backend == DNN_BACKEND_HALIDE)
{
if (halide_scheduler == "disabled")
throw cvtest::SkipTestException("Halide test is disabled");
if (!halide_scheduler.empty())
halide_scheduler = findDataFile(std::string("dnn/halide_scheduler_") + (target == DNN_TARGET_OPENCL ? "opencl_" : "") + halide_scheduler, true);
}
net = readNet(proto, weights);
net.setInput(blobFromImage(input, 1.0, Size(), Scalar(), false));
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
if (backend == DNN_BACKEND_HALIDE)
{
net.setHalideScheduler(halide_scheduler);
}
MatShape netInputShape = shape(1, 3, input.rows, input.cols);
size_t weightsMemory = 0, blobsMemory = 0;
net.getMemoryConsumption(netInputShape, weightsMemory, blobsMemory);
int64 flops = net.getFLOPS(netInputShape);
CV_Assert(flops > 0);
net.forward(outputLayer); // warmup
std::cout << "Memory consumption:" << std::endl;
std::cout << " Weights(parameters): " << divUp(weightsMemory, 1u<<20) << " Mb" << std::endl;
std::cout << " Blobs: " << divUp(blobsMemory, 1u<<20) << " Mb" << std::endl;
std::cout << "Calculation complexity: " << flops * 1e-9 << " GFlops" << std::endl;
PERF_SAMPLE_BEGIN()
net.forward();
PERF_SAMPLE_END()
SANITY_CHECK_NOTHING();
}
};
PERF_TEST_P_(DNNTestNetwork, AlexNet)
{
processNet("dnn/bvlc_alexnet.caffemodel", "dnn/bvlc_alexnet.prototxt",
"alexnet.yml", Mat(cv::Size(227, 227), CV_32FC3));
}
PERF_TEST_P_(DNNTestNetwork, GoogLeNet)
{
processNet("dnn/bvlc_googlenet.caffemodel", "dnn/bvlc_googlenet.prototxt",
"", Mat(cv::Size(224, 224), CV_32FC3));
}
PERF_TEST_P_(DNNTestNetwork, ResNet_50)
{
processNet("dnn/ResNet-50-model.caffemodel", "dnn/ResNet-50-deploy.prototxt",
"resnet_50.yml", Mat(cv::Size(224, 224), CV_32FC3));
}
PERF_TEST_P_(DNNTestNetwork, SqueezeNet_v1_1)
{
processNet("dnn/squeezenet_v1.1.caffemodel", "dnn/squeezenet_v1.1.prototxt",
"squeezenet_v1_1.yml", Mat(cv::Size(227, 227), CV_32FC3));
}
PERF_TEST_P_(DNNTestNetwork, Inception_5h)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE) throw SkipTestException("");
processNet("dnn/tensorflow_inception_graph.pb", "",
"inception_5h.yml",
Mat(cv::Size(224, 224), CV_32FC3), "softmax2");
}
PERF_TEST_P_(DNNTestNetwork, ENet)
{
if ((backend == DNN_BACKEND_INFERENCE_ENGINE) ||
(backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16))
throw SkipTestException("");
processNet("dnn/Enet-model-best.net", "", "enet.yml",
Mat(cv::Size(512, 256), CV_32FC3));
}
PERF_TEST_P_(DNNTestNetwork, SSD)
{
processNet("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel", "dnn/ssd_vgg16.prototxt", "disabled",
Mat(cv::Size(300, 300), CV_32FC3));
}
PERF_TEST_P_(DNNTestNetwork, OpenFace)
{
if (backend == DNN_BACKEND_HALIDE ||
(backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD))
throw SkipTestException("");
processNet("dnn/openface_nn4.small2.v1.t7", "", "",
Mat(cv::Size(96, 96), CV_32FC3));
}
PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_Caffe)
{
if (backend == DNN_BACKEND_HALIDE)
throw SkipTestException("");
processNet("dnn/MobileNetSSD_deploy.caffemodel", "dnn/MobileNetSSD_deploy.prototxt", "",
Mat(cv::Size(300, 300), CV_32FC3));
}
PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_v1_TensorFlow)
{
if (backend == DNN_BACKEND_HALIDE)
throw SkipTestException("");
processNet("dnn/ssd_mobilenet_v1_coco_2017_11_17.pb", "ssd_mobilenet_v1_coco_2017_11_17.pbtxt", "",
Mat(cv::Size(300, 300), CV_32FC3));
}
PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_v2_TensorFlow)
{
if (backend == DNN_BACKEND_HALIDE)
throw SkipTestException("");
processNet("dnn/ssd_mobilenet_v2_coco_2018_03_29.pb", "ssd_mobilenet_v2_coco_2018_03_29.pbtxt", "",
Mat(cv::Size(300, 300), CV_32FC3));
}
PERF_TEST_P_(DNNTestNetwork, DenseNet_121)
{
if (backend == DNN_BACKEND_HALIDE)
throw SkipTestException("");
processNet("dnn/DenseNet_121.caffemodel", "dnn/DenseNet_121.prototxt", "",
Mat(cv::Size(224, 224), CV_32FC3));
}
PERF_TEST_P_(DNNTestNetwork, OpenPose_pose_mpi_faster_4_stages)
{
if (backend == DNN_BACKEND_HALIDE ||
(backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD))
throw SkipTestException("");
// The same .caffemodel but modified .prototxt
// See https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/pose/poseParameters.cpp
processNet("dnn/openpose_pose_mpi.caffemodel", "dnn/openpose_pose_mpi_faster_4_stages.prototxt", "",
Mat(cv::Size(368, 368), CV_32FC3));
}
PERF_TEST_P_(DNNTestNetwork, opencv_face_detector)
{
if (backend == DNN_BACKEND_HALIDE)
throw SkipTestException("");
processNet("dnn/opencv_face_detector.caffemodel", "dnn/opencv_face_detector.prototxt", "",
Mat(cv::Size(300, 300), CV_32FC3));
}
PERF_TEST_P_(DNNTestNetwork, Inception_v2_SSD_TensorFlow)
{
if (backend == DNN_BACKEND_HALIDE)
throw SkipTestException("");
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
throw SkipTestException("Test is disabled for MyriadX");
#endif
processNet("dnn/ssd_inception_v2_coco_2017_11_17.pb", "ssd_inception_v2_coco_2017_11_17.pbtxt", "",
Mat(cv::Size(300, 300), CV_32FC3));
}
PERF_TEST_P_(DNNTestNetwork, YOLOv3)
{
if (backend == DNN_BACKEND_HALIDE)
throw SkipTestException("");
Mat sample = imread(findDataFile("dnn/dog416.png", false));
Mat inp;
sample.convertTo(inp, CV_32FC3);
processNet("dnn/yolov3.cfg", "dnn/yolov3.weights", "", inp / 255);
}
PERF_TEST_P_(DNNTestNetwork, EAST_text_detection)
{
if (backend == DNN_BACKEND_HALIDE)
throw SkipTestException("");
processNet("dnn/frozen_east_text_detection.pb", "", "", Mat(cv::Size(320, 320), CV_32FC3));
}
PERF_TEST_P_(DNNTestNetwork, FastNeuralStyle_eccv16)
{
if (backend == DNN_BACKEND_HALIDE ||
(backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) ||
(backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD))
throw SkipTestException("");
processNet("dnn/fast_neural_style_eccv16_starry_night.t7", "", "", Mat(cv::Size(320, 240), CV_32FC3));
}
PERF_TEST_P_(DNNTestNetwork, Inception_v2_Faster_RCNN)
{
if (backend == DNN_BACKEND_HALIDE ||
(backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU) ||
(backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16))
throw SkipTestException("");
processNet("dnn/faster_rcnn_inception_v2_coco_2018_01_28.pb",
"dnn/faster_rcnn_inception_v2_coco_2018_01_28.pbtxt", "",
Mat(cv::Size(800, 600), CV_32FC3));
}
INSTANTIATE_TEST_CASE_P(/*nothing*/, DNNTestNetwork, dnnBackendsAndTargets());
} // namespace