mirror of
https://github.com/opencv/opencv.git
synced 2025-01-22 09:36:59 +08:00
416bf3253d
* attempt to add 0d/1d mat support to OpenCV * revised the patch; now 1D mat is treated as 1xN 2D mat rather than Nx1. * a step towards 'green' tests * another little step towards 'green' tests * calib test failures seem to be fixed now * more fixes _core & _dnn * another step towards green ci; even 0D mat's (a.k.a. scalars) are now partly supported! * * fixed strange bug in aruco/charuco detector, not sure why it did not work * also fixed a few remaining failures (hopefully) in dnn & core * disabled failing GAPI tests - too complex to dig into this compiler pipeline * hopefully fixed java tests * trying to fix some more tests * quick followup fix * continue to fix test failures and warnings * quick followup fix * trying to fix some more tests * partly fixed support for 0D/scalar UMat's * use updated parseReduce() from upstream * trying to fix the remaining test failures * fixed [ch]aruco tests in Python * still trying to fix tests * revert "fix" in dnn's CUDA tensor * trying to fix dnn+CUDA test failures * fixed 1D umat creation * hopefully fixed remaining cuda test failures * removed training whitespaces
120 lines
4.1 KiB
C++
120 lines
4.1 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html
|
|
|
|
|
|
#include "precomp.hpp"
|
|
#include "opencl_kernels_core.hpp"
|
|
|
|
#include "convert_scale.simd.hpp"
|
|
#include "convert_scale.simd_declarations.hpp" // defines CV_CPU_DISPATCH_MODES_ALL=AVX2,...,BASELINE based on CMakeLists.txt content
|
|
|
|
namespace cv
|
|
{
|
|
|
|
static BinaryFunc getCvtScaleAbsFunc(int depth)
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
CV_CPU_DISPATCH(getCvtScaleAbsFunc, (depth),
|
|
CV_CPU_DISPATCH_MODES_ALL);
|
|
}
|
|
|
|
BinaryFunc getConvertScaleFunc(int sdepth, int ddepth)
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
CV_CPU_DISPATCH(getConvertScaleFunc, (sdepth, ddepth),
|
|
CV_CPU_DISPATCH_MODES_ALL);
|
|
}
|
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
static bool ocl_convertScaleAbs( InputArray _src, OutputArray _dst, double alpha, double beta )
|
|
{
|
|
const ocl::Device & d = ocl::Device::getDefault();
|
|
|
|
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
|
|
bool doubleSupport = d.doubleFPConfig() > 0;
|
|
if (!doubleSupport && depth == CV_64F)
|
|
return false;
|
|
|
|
_dst.createSameSize(_src, CV_8UC(cn));
|
|
int kercn = 1;
|
|
if (d.isIntel())
|
|
{
|
|
static const int vectorWidths[] = {4, 4, 4, 4, 4, 4, 4, -1};
|
|
kercn = ocl::checkOptimalVectorWidth( vectorWidths, _src, _dst,
|
|
noArray(), noArray(), noArray(),
|
|
noArray(), noArray(), noArray(),
|
|
noArray(), ocl::OCL_VECTOR_MAX);
|
|
}
|
|
else
|
|
kercn = ocl::predictOptimalVectorWidthMax(_src, _dst);
|
|
|
|
int rowsPerWI = d.isIntel() ? 4 : 1;
|
|
char cvt[2][50];
|
|
int wdepth = std::max(depth, CV_32F);
|
|
String build_opt = format("-D OP_CONVERT_SCALE_ABS -D UNARY_OP -D dstT=%s -D DEPTH_dst=%d -D srcT1=%s"
|
|
" -D workT=%s -D wdepth=%d -D convertToWT1=%s -D convertToDT=%s"
|
|
" -D workT1=%s -D rowsPerWI=%d%s",
|
|
ocl::typeToStr(CV_8UC(kercn)), CV_8U,
|
|
ocl::typeToStr(CV_MAKE_TYPE(depth, kercn)),
|
|
ocl::typeToStr(CV_MAKE_TYPE(wdepth, kercn)), wdepth,
|
|
ocl::convertTypeStr(depth, wdepth, kercn, cvt[0], sizeof(cvt[0])),
|
|
ocl::convertTypeStr(wdepth, CV_8U, kercn, cvt[1], sizeof(cvt[1])),
|
|
ocl::typeToStr(wdepth), rowsPerWI,
|
|
doubleSupport ? " -D DOUBLE_SUPPORT" : "");
|
|
ocl::Kernel k("KF", ocl::core::arithm_oclsrc, build_opt);
|
|
if (k.empty())
|
|
return false;
|
|
|
|
UMat src = _src.getUMat();
|
|
UMat dst = _dst.getUMat();
|
|
|
|
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src),
|
|
dstarg = ocl::KernelArg::WriteOnly(dst, cn, kercn);
|
|
|
|
if (wdepth == CV_32F)
|
|
k.args(srcarg, dstarg, (float)alpha, (float)beta);
|
|
else if (wdepth == CV_64F)
|
|
k.args(srcarg, dstarg, alpha, beta);
|
|
|
|
size_t globalsize[2] = { (size_t)src.cols * cn / kercn, ((size_t)src.rows + rowsPerWI - 1) / rowsPerWI };
|
|
return k.run(2, globalsize, NULL, false);
|
|
}
|
|
|
|
#endif
|
|
|
|
void convertScaleAbs(InputArray _src, OutputArray _dst, double alpha, double beta)
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
CV_OCL_RUN(_src.dims() <= 2 && _dst.isUMat(),
|
|
ocl_convertScaleAbs(_src, _dst, alpha, beta))
|
|
|
|
Mat src = _src.getMat();
|
|
int cn = src.channels();
|
|
double scale[] = {alpha, beta};
|
|
_dst.create( src.dims, src.size, CV_8UC(cn) );
|
|
Mat dst = _dst.getMat();
|
|
BinaryFunc func = getCvtScaleAbsFunc(src.depth());
|
|
CV_Assert( func != 0 );
|
|
|
|
if( src.dims <= 2 )
|
|
{
|
|
Size sz = getContinuousSize2D(src, dst, cn);
|
|
func( src.ptr(), src.step, 0, 0, dst.ptr(), dst.step, sz, scale );
|
|
}
|
|
else
|
|
{
|
|
const Mat* arrays[] = {&src, &dst, 0};
|
|
uchar* ptrs[2] = {};
|
|
NAryMatIterator it(arrays, ptrs);
|
|
Size sz((int)it.size*cn, 1);
|
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it )
|
|
func( ptrs[0], 0, 0, 0, ptrs[1], 0, sz, scale );
|
|
}
|
|
}
|
|
|
|
} // namespace
|