opencv/modules/core/src/matrix.cpp
Alexander Smorkalov 163d544ecf Merge branch 4.x
2023-10-02 10:17:23 +03:00

1400 lines
37 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "precomp.hpp"
#include "bufferpool.impl.hpp"
namespace cv {
void MatAllocator::map(UMatData*, AccessFlag) const
{
}
void MatAllocator::unmap(UMatData* u) const
{
if(u->urefcount == 0 && u->refcount == 0)
{
deallocate(u);
}
}
void MatAllocator::download(UMatData* u, void* dstptr,
int dims, const size_t sz[],
const size_t srcofs[], const size_t srcstep[],
const size_t dststep[]) const
{
if(!u)
return;
int isz[CV_MAX_DIM];
uchar* srcptr = u->data;
for( int i = 0; i < dims; i++ )
{
CV_Assert( sz[i] <= (size_t)INT_MAX );
if( sz[i] == 0 )
return;
if( srcofs )
srcptr += srcofs[i]*(i <= dims-2 ? srcstep[i] : 1);
isz[i] = (int)sz[i];
}
Mat src(dims, isz, CV_8U, srcptr, srcstep);
Mat dst(dims, isz, CV_8U, dstptr, dststep);
const Mat* arrays[] = { &src, &dst };
uchar* ptrs[2];
NAryMatIterator it(arrays, ptrs, 2);
size_t planesz = it.size;
for( size_t j = 0; j < it.nplanes; j++, ++it )
memcpy(ptrs[1], ptrs[0], planesz);
}
void MatAllocator::upload(UMatData* u, const void* srcptr, int dims, const size_t sz[],
const size_t dstofs[], const size_t dststep[],
const size_t srcstep[]) const
{
if(!u)
return;
int isz[CV_MAX_DIM];
uchar* dstptr = u->data;
for( int i = 0; i < dims; i++ )
{
CV_Assert( sz[i] <= (size_t)INT_MAX );
if( sz[i] == 0 )
return;
if( dstofs )
dstptr += dstofs[i]*(i <= dims-2 ? dststep[i] : 1);
isz[i] = (int)sz[i];
}
Mat src(dims, isz, CV_8U, (void*)srcptr, srcstep);
Mat dst(dims, isz, CV_8U, dstptr, dststep);
const Mat* arrays[] = { &src, &dst };
uchar* ptrs[2];
NAryMatIterator it(arrays, ptrs, 2);
size_t planesz = it.size;
for( size_t j = 0; j < it.nplanes; j++, ++it )
memcpy(ptrs[1], ptrs[0], planesz);
}
void MatAllocator::copy(UMatData* usrc, UMatData* udst, int dims, const size_t sz[],
const size_t srcofs[], const size_t srcstep[],
const size_t dstofs[], const size_t dststep[], bool /*sync*/) const
{
CV_INSTRUMENT_REGION();
if(!usrc || !udst)
return;
int isz[CV_MAX_DIM];
uchar* srcptr = usrc->data;
uchar* dstptr = udst->data;
for( int i = 0; i < dims; i++ )
{
CV_Assert( sz[i] <= (size_t)INT_MAX );
if( sz[i] == 0 )
return;
if( srcofs )
srcptr += srcofs[i]*(i <= dims-2 ? srcstep[i] : 1);
if( dstofs )
dstptr += dstofs[i]*(i <= dims-2 ? dststep[i] : 1);
isz[i] = (int)sz[i];
}
Mat src(dims, isz, CV_8U, srcptr, srcstep);
Mat dst(dims, isz, CV_8U, dstptr, dststep);
const Mat* arrays[] = { &src, &dst };
uchar* ptrs[2];
NAryMatIterator it(arrays, ptrs, 2);
size_t planesz = it.size;
for( size_t j = 0; j < it.nplanes; j++, ++it )
memcpy(ptrs[1], ptrs[0], planesz);
}
BufferPoolController* MatAllocator::getBufferPoolController(const char* id) const
{
CV_UNUSED(id);
static DummyBufferPoolController dummy;
return &dummy;
}
class StdMatAllocator CV_FINAL : public MatAllocator
{
public:
UMatData* allocate(int dims, const int* sizes, int type,
void* data0, size_t* step, AccessFlag /*flags*/, UMatUsageFlags /*usageFlags*/) const CV_OVERRIDE
{
size_t total = CV_ELEM_SIZE(type);
for( int i = dims-1; i >= 0; i-- )
{
if( step )
{
if( data0 && step[i] != CV_AUTOSTEP )
{
CV_Assert(total <= step[i]);
total = step[i];
}
else
step[i] = total;
}
total *= sizes[i];
}
uchar* data = data0 ? (uchar*)data0 : (uchar*)fastMalloc(total);
UMatData* u = new UMatData(this);
u->data = u->origdata = data;
u->size = total;
if(data0)
u->flags |= UMatData::USER_ALLOCATED;
return u;
}
bool allocate(UMatData* u, AccessFlag /*accessFlags*/, UMatUsageFlags /*usageFlags*/) const CV_OVERRIDE
{
if(!u) return false;
return true;
}
void deallocate(UMatData* u) const CV_OVERRIDE
{
if(!u)
return;
CV_Assert(u->urefcount == 0);
CV_Assert(u->refcount == 0);
if( !(u->flags & UMatData::USER_ALLOCATED) )
{
fastFree(u->origdata);
u->origdata = 0;
}
delete u;
}
};
static
MatAllocator*& getDefaultAllocatorMatRef()
{
static MatAllocator* g_matAllocator = Mat::getStdAllocator();
return g_matAllocator;
}
MatAllocator* Mat::getDefaultAllocator()
{
return getDefaultAllocatorMatRef();
}
void Mat::setDefaultAllocator(MatAllocator* allocator)
{
getDefaultAllocatorMatRef() = allocator;
}
MatAllocator* Mat::getStdAllocator()
{
CV_SINGLETON_LAZY_INIT(MatAllocator, new StdMatAllocator())
}
//==================================================================================================
bool MatSize::operator==(const MatSize& sz) const CV_NOEXCEPT
{
int d = dims();
int dsz = sz.dims();
if( d != dsz )
return false;
if( d == 2 )
return p[0] == sz.p[0] && p[1] == sz.p[1];
for( int i = 0; i < d; i++ )
if( p[i] != sz.p[i] )
return false;
return true;
}
void setSize( Mat& m, int _dims, const int* _sz, const size_t* _steps, bool autoSteps)
{
CV_Assert( 0 <= _dims && _dims <= CV_MAX_DIM );
if( m.dims != _dims )
{
if( m.step.p != m.step.buf && m.step.p != m.step.buf+1)
{
fastFree(m.step.p);
}
m.step.p = m.step.buf;
m.size.p = &m.rows;
if( _dims > 2 )
{
m.step.p = (size_t*)fastMalloc(_dims*sizeof(m.step.p[0]) + (_dims+1)*sizeof(m.size.p[0]));
m.size.p = (int*)(m.step.p + _dims) + 1;
m.size.p[-1] = _dims;
m.rows = m.cols = -1;
}
}
m.dims = _dims;
size_t esz = CV_ELEM_SIZE(m.flags), esz1 = CV_ELEM_SIZE1(m.flags), total = esz;
if (_sz != 0) {
for( int i = _dims-1; i >= 0; i-- )
{
int s = _sz[i];
CV_Assert( s >= 0 );
m.size.p[i] = s;
if( _steps )
{
if (i < _dims-1)
{
if (_steps[i] % esz1 != 0)
{
CV_Error_(Error::BadStep, ("Step %zu for dimension %d must be a multiple of esz1 %zu", _steps[i], i, esz1));
}
m.step.p[i] = _steps[i];
}
else
{
m.step.p[i] = esz;
}
}
else if( autoSteps )
{
m.step.p[i] = total;
uint64 total1 = (uint64)total*s;
if( (uint64)total1 != (size_t)total1 )
CV_Error( CV_StsOutOfRange, "The total matrix size does not fit to \"size_t\" type" );
total = (size_t)total1;
}
}
}
if( _dims < 2 )
{
m.cols = _dims >= 1 && _sz ? _sz[0] : 1;
m.rows = 1;
m.size.p = &m.cols;
m.step.buf[0] = m.cols*esz;
m.step.buf[1] = esz;
m.step.p = &m.step.buf[1];
}
}
int updateContinuityFlag(int flags, int dims, const int* size, const size_t* step)
{
int i, j;
if (dims <= 1)
return flags | Mat::CONTINUOUS_FLAG;
for( i = 0; i < dims; i++ )
{
if( size[i] > 1 )
break;
}
uint64 t = (uint64)size[std::min(i, dims-1)]*CV_MAT_CN(flags);
for( j = dims-1; j > i; j-- )
{
t *= size[j];
if( step[j]*size[j] < step[j-1] )
break;
}
if( j <= i && t == (uint64)(int)t )
return flags | Mat::CONTINUOUS_FLAG;
return flags & ~Mat::CONTINUOUS_FLAG;
}
void Mat::updateContinuityFlag()
{
flags = cv::updateContinuityFlag(flags, dims, size.p, step.p);
}
void finalizeHdr(Mat& m)
{
m.updateContinuityFlag();
int d = m.dims;
if( d > 2 )
m.rows = m.cols = -1;
if(m.u)
m.datastart = m.data = m.u->data;
if( m.data )
{
m.datalimit = m.datastart + m.size[0]*m.step[0];
if( m.size[0] > 0 )
{
int lastdim = d > 0 ? d - 1 : 0;
m.dataend = m.ptr() + m.size[lastdim]*m.step[lastdim];
for( int i = 0; i < d-1; i++ )
m.dataend += (m.size[i] - 1)*m.step[i];
}
else
m.dataend = m.datalimit;
}
else
m.dataend = m.datalimit = 0;
}
//======================================= Mat ======================================================
Mat::Mat() CV_NOEXCEPT
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows), step(0)
{}
Mat::Mat(int _rows, int _cols, int _type)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows), step(0)
{
create(_rows, _cols, _type);
}
Mat::Mat(int _rows, int _cols, int _type, const Scalar& _s)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows), step(0)
{
create(_rows, _cols, _type);
*this = _s;
}
Mat::Mat(Size _sz, int _type)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows), step(0)
{
create( _sz.height, _sz.width, _type );
}
Mat::Mat(Size _sz, int _type, const Scalar& _s)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows), step(0)
{
create(_sz.height, _sz.width, _type);
*this = _s;
}
Mat::Mat(int _dims, const int* _sz, int _type)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows), step(0)
{
create(_dims, _sz, _type);
}
Mat::Mat(int _dims, const int* _sz, int _type, const Scalar& _s)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows), step(0)
{
create(_dims, _sz, _type);
*this = _s;
}
Mat::Mat(const std::vector<int>& _sz, int _type)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows), step(0)
{
create(_sz, _type);
}
Mat::Mat(const std::vector<int>& _sz, int _type, const Scalar& _s)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows), step(0)
{
create(_sz, _type);
*this = _s;
}
Mat::Mat(const Mat& m)
: flags(m.flags), dims(m.dims), rows(m.rows), cols(m.cols), data(m.data),
datastart(m.datastart), dataend(m.dataend), datalimit(m.datalimit), allocator(m.allocator),
u(m.u), size(&rows), step(0)
{
if( u )
CV_XADD(&u->refcount, 1);
if( m.dims <= 2 )
{
int _1d = m.dims <= 1;
size.p = &rows + _1d;
step.p = &step.buf[_1d];
step.buf[0] = m.step.buf[0];
step.buf[1] = m.step.buf[1];
}
else
{
dims = 0;
copySize(m);
}
}
Mat::Mat(int _rows, int _cols, int _type, void* _data, size_t _step)
: flags(MAGIC_VAL + (_type & TYPE_MASK)), dims(2), rows(_rows), cols(_cols),
data((uchar*)_data), datastart((uchar*)_data), dataend(0), datalimit(0),
allocator(0), u(0), size(&rows)
{
CV_Assert(total() == 0 || data != NULL);
size_t esz = CV_ELEM_SIZE(_type), esz1 = CV_ELEM_SIZE1(_type);
size_t minstep = cols * esz;
if( _step == AUTO_STEP )
{
_step = minstep;
}
else
{
CV_Assert( _step >= minstep );
if (_step % esz1 != 0)
{
CV_Error(Error::BadStep, "Step must be a multiple of esz1");
}
}
step.buf[0] = _step;
step.buf[1] = esz;
datalimit = datastart + _step * rows;
dataend = datalimit - _step + minstep;
updateContinuityFlag();
}
Mat::Mat(Size _sz, int _type, void* _data, size_t _step)
: flags(MAGIC_VAL + (_type & TYPE_MASK)), dims(2), rows(_sz.height), cols(_sz.width),
data((uchar*)_data), datastart((uchar*)_data), dataend(0), datalimit(0),
allocator(0), u(0), size(&rows)
{
CV_Assert(total() == 0 || data != NULL);
size_t esz = CV_ELEM_SIZE(_type), esz1 = CV_ELEM_SIZE1(_type);
size_t minstep = cols*esz;
if( _step == AUTO_STEP )
{
_step = minstep;
}
else
{
CV_CheckGE(_step, minstep, "");
if (_step % esz1 != 0)
{
CV_Error(Error::BadStep, "Step must be a multiple of esz1");
}
}
step[0] = _step;
step[1] = esz;
datalimit = datastart + _step*rows;
dataend = datalimit - _step + minstep;
updateContinuityFlag();
}
Mat::~Mat()
{
CV_Assert(dummy == 153 && step.buf[2] == 153);
release();
if( step.p != step.buf && step.p != step.buf+1 )
fastFree(step.p);
}
Mat& Mat::operator=(const Mat& m)
{
if( this != &m )
{
if( m.u )
CV_XADD(&m.u->refcount, 1);
release();
flags = m.flags;
if( dims <= 2 && m.dims <= 2 )
{
int _1d = m.dims < 2;
dims = m.dims;
rows = m.rows;
cols = m.cols;
step.p = &step.buf[_1d];
step.buf[0] = m.step.buf[0];
step.buf[1] = m.step.buf[1];
size.p = &rows + _1d;
}
else
copySize(m);
data = m.data;
datastart = m.datastart;
dataend = m.dataend;
datalimit = m.datalimit;
allocator = m.allocator;
u = m.u;
}
return *this;
}
Mat Mat::clone() const
{
Mat m;
copyTo(m);
return m;
}
void Mat::assignTo( Mat& m, int _type ) const
{
if( _type < 0 )
m = *this;
else
convertTo(m, _type);
}
void Mat::create(int _rows, int _cols, int _type)
{
_type &= TYPE_MASK;
if( dims <= 2 && rows == _rows && cols == _cols && type() == _type && data )
return;
int sz[] = {_rows, _cols};
create(2, sz, _type);
}
void Mat::create(Size _sz, int _type)
{
create(_sz.height, _sz.width, _type);
}
void Mat::createSameSize(InputArray m, int type)
{
_OutputArray(*this).createSameSize(m, type);
}
void Mat::addref()
{
if( u )
CV_XADD(&u->refcount, 1);
}
void Mat::release()
{
if( u && CV_XADD(&u->refcount, -1) == 1 )
deallocate();
u = NULL;
datastart = dataend = datalimit = data = 0;
for(int i = 0; i < dims; i++)
size.p[i] = 0;
#ifdef _DEBUG
flags = MAGIC_VAL;
if(step.p != step.buf && step.p != step.buf+1)
{
fastFree(step.p);
step.p = step.buf;
size.p = &rows;
}
dims = rows = cols = 0;
#endif
}
size_t Mat::step1(int i) const
{
return step.p[i] / elemSize1();
}
bool Mat::empty() const
{
return data == 0 || total() == 0;
}
size_t Mat::total() const
{
if( dims <= 2 )
return (size_t)rows * cols;
size_t p = 1;
for( int i = 0; i < dims; i++ )
p *= size[i];
return p;
}
size_t Mat::total(int startDim, int endDim) const
{
CV_Assert( 0 <= startDim && startDim <= endDim);
size_t p = 1;
int endDim_ = endDim <= dims ? endDim : dims;
for( int i = startDim; i < endDim_; i++ )
p *= size[i];
return p;
}
Mat::Mat(Mat&& m)
: flags(m.flags), dims(m.dims), rows(m.rows), cols(m.cols), data(m.data),
datastart(m.datastart), dataend(m.dataend), datalimit(m.datalimit), allocator(m.allocator),
u(m.u), size(&rows)
{
if (m.dims <= 2) // move new step/size info
{
int _1d = dims <= 1;
step.p = &step.buf[_1d];
size.p = &rows + _1d;
step.buf[0] = m.step.buf[0];
step.buf[1] = m.step.buf[1];
}
else
{
CV_Assert(m.step.p != m.step.buf && m.step.p != m.step.buf+1);
step.p = m.step.p;
size.p = m.size.p;
m.step.p = m.step.buf;
m.size.p = &m.rows;
}
m.flags = MAGIC_VAL; m.dims = m.rows = m.cols = 0;
m.data = NULL; m.datastart = NULL; m.dataend = NULL; m.datalimit = NULL;
m.allocator = NULL;
m.u = NULL;
}
Mat& Mat::operator=(Mat&& m)
{
if (this == &m)
return *this;
release();
flags = m.flags; dims = m.dims; rows = m.rows; cols = m.cols; data = m.data;
datastart = m.datastart; dataend = m.dataend; datalimit = m.datalimit; allocator = m.allocator;
u = m.u;
if (step.p != step.buf && step.p != step.buf+1) // release self step/size
{
fastFree(step.p);
}
step.p = step.buf;
size.p = &rows;
if (m.dims <= 2) // move new step/size info
{
int _1d = dims <= 1;
step.buf[0] = m.step.buf[0];
step.buf[1] = m.step.buf[1];
step.p = &step.buf[_1d];
size.p = &rows + _1d;
}
else
{
CV_Assert(m.step.p != m.step.buf && m.step.p != m.step.buf+1);
step.p = m.step.p;
size.p = m.size.p;
}
m.step.p = m.step.buf;
m.size.p = &m.rows;
m.flags = MAGIC_VAL; m.dims = m.rows = m.cols = 0;
m.data = NULL; m.datastart = NULL; m.dataend = NULL; m.datalimit = NULL;
m.allocator = NULL;
m.u = NULL;
return *this;
}
void Mat::create(int d0, const int* _sizes, int _type)
{
int sz1 = 1, d = d0;
int i;
if (d == 0) {
d = 1;
_sizes = (const int*)&sz1;
}
CV_Assert(0 <= d && d <= CV_MAX_DIM && _sizes);
_type = CV_MAT_TYPE(_type);
if( data && d == dims && _type == type() )
{
for( i = 0; i < d; i++ )
if( size[i] != _sizes[i] )
break;
if( i == d )
return;
}
int _sizes_backup[CV_MAX_DIM]; // #5991
if (_sizes == (this->size.p))
{
for(i = 0; i < d; i++ )
_sizes_backup[i] = _sizes[i];
_sizes = _sizes_backup;
}
release();
if( d == 0 )
return;
flags = (_type & CV_MAT_TYPE_MASK) | MAGIC_VAL;
setSize(*this, d, _sizes, 0, true);
if( total() > 0 )
{
MatAllocator *a = allocator, *a0 = getDefaultAllocator();
#ifdef HAVE_TGPU
if( !a || a == tegra::getAllocator() )
a = tegra::getAllocator(d, _sizes, _type);
#endif
if(!a)
a = a0;
try
{
u = a->allocate(dims, size, _type, 0, step.p, ACCESS_RW /* ignored */, USAGE_DEFAULT);
CV_Assert(u != 0);
}
catch (...)
{
if (a == a0)
throw;
u = a0->allocate(dims, size, _type, 0, step.p, ACCESS_RW /* ignored */, USAGE_DEFAULT);
CV_Assert(u != 0);
}
CV_Assert( step[dims-1] == (size_t)CV_ELEM_SIZE(flags) );
}
addref();
finalizeHdr(*this);
dims = d0;
}
void Mat::create(const std::vector<int>& _sizes, int _type)
{
create((int)_sizes.size(), _sizes.data(), _type);
}
void Mat::copySize(const Mat& m)
{
setSize(*this, m.dims, 0, 0);
step.buf[0] = m.step.buf[0];
step.buf[1] = m.step.buf[1];
for( int i = 0; i < dims; i++ )
{
size[i] = m.size[i];
step[i] = m.step[i];
}
}
void Mat::deallocate()
{
if(u)
{
UMatData* u_ = u;
u = NULL;
(u_->currAllocator ? u_->currAllocator : allocator ? allocator : getDefaultAllocator())->unmap(u_);
}
}
Mat::Mat(const Mat& m, const Range& _rowRange, const Range& _colRange)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows)
{
CV_Assert( m.dims >= 2 || (m.dims == 1 && (_rowRange == Range::all() || _rowRange == Range(0, m.rows))));
if( m.dims > 2 )
{
AutoBuffer<Range> rs(m.dims);
rs[0] = _rowRange;
rs[1] = _colRange;
for( int i = 2; i < m.dims; i++ )
rs[i] = Range::all();
*this = m(rs.data());
return;
}
*this = m;
try
{
if( _rowRange != Range::all() && _rowRange != Range(0,rows) )
{
CV_Assert( 0 <= _rowRange.start && _rowRange.start <= _rowRange.end
&& _rowRange.end <= m.rows );
rows = _rowRange.size();
data += step*_rowRange.start;
flags |= SUBMATRIX_FLAG;
}
if( _colRange != Range::all() && _colRange != Range(0,cols) )
{
CV_Assert( 0 <= _colRange.start && _colRange.start <= _colRange.end
&& _colRange.end <= m.cols );
cols = _colRange.size();
data += _colRange.start*elemSize();
flags |= SUBMATRIX_FLAG;
}
}
catch(...)
{
release();
throw;
}
updateContinuityFlag();
if( rows <= 0 || cols <= 0 )
{
release();
rows = cols = 0;
}
}
Mat::Mat(const Mat& m, const Rect& roi)
: flags(m.flags), dims(2), rows(roi.height), cols(roi.width),
data(m.data + roi.y*m.step[0]),
datastart(m.datastart), dataend(m.dataend), datalimit(m.datalimit),
allocator(m.allocator), u(m.u), size(&rows)
{
CV_Assert( m.dims <= 2 );
size_t esz = CV_ELEM_SIZE(flags);
data += roi.x*esz;
CV_Assert( 0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols &&
0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows );
if( roi.width < m.cols || roi.height < m.rows )
flags |= SUBMATRIX_FLAG;
step[0] = m.step[0]; step[1] = esz;
updateContinuityFlag();
addref();
if( rows <= 0 || cols <= 0 )
{
rows = cols = 0;
release();
}
}
Mat::Mat(int _dims, const int* _sizes, int _type, void* _data, const size_t* _steps)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows)
{
flags |= CV_MAT_TYPE(_type);
datastart = data = (uchar*)_data;
setSize(*this, _dims, _sizes, _steps, true);
finalizeHdr(*this);
}
Mat::Mat(const std::vector<int>& _sizes, int _type, void* _data, const size_t* _steps)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows)
{
flags |= CV_MAT_TYPE(_type);
datastart = data = (uchar*)_data;
setSize(*this, (int)_sizes.size(), _sizes.data(), _steps, true);
finalizeHdr(*this);
}
Mat::Mat(const Mat& m, const Range* ranges)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows)
{
int d = m.dims;
CV_Assert(ranges);
for( int i = 0; i < d; i++ )
{
Range r = ranges[i];
CV_Assert( r == Range::all() || (0 <= r.start && r.start < r.end && r.end <= m.size[i]) );
}
*this = m;
for( int i = 0; i < d; i++ )
{
Range r = ranges[i];
if( r != Range::all() && r != Range(0, size.p[i]))
{
size.p[i] = r.end - r.start;
data += r.start*step.p[i];
flags |= SUBMATRIX_FLAG;
}
}
updateContinuityFlag();
}
Mat::Mat(const Mat& m, const std::vector<Range>& ranges)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows)
{
int d = m.dims;
CV_Assert((int)ranges.size() == d);
for (int i = 0; i < d; i++)
{
Range r = ranges[i];
CV_Assert(r == Range::all() || (0 <= r.start && r.start < r.end && r.end <= m.size[i]));
}
*this = m;
for (int i = 0; i < d; i++)
{
Range r = ranges[i];
if (r != Range::all() && r != Range(0, size.p[i]))
{
size.p[i] = r.end - r.start;
data += r.start*step.p[i];
flags |= SUBMATRIX_FLAG;
}
}
updateContinuityFlag();
}
Mat Mat::diag(int d) const
{
CV_Assert( dims == 2 );
Mat m = *this;
size_t esz = elemSize();
int len;
if( d >= 0 )
{
len = std::min(cols - d, rows);
m.data += esz*d;
}
else
{
len = std::min(rows + d, cols);
m.data -= step[0]*d;
}
CV_DbgAssert( len > 0 );
m.size[0] = m.rows = len;
m.size[1] = m.cols = 1;
m.step[0] += (len > 1 ? esz : 0);
m.updateContinuityFlag();
if( size() != Size(1,1) )
m.flags |= SUBMATRIX_FLAG;
return m;
}
void Mat::pop_back(size_t nelems)
{
CV_Assert( nelems <= (size_t)size.p[0] );
if( isSubmatrix() )
*this = rowRange(0, size.p[0] - (int)nelems);
else
{
size.p[0] -= (int)nelems;
dataend -= nelems*step.p[0];
}
}
void Mat::push_back_(const void* elem)
{
size_t r = size.p[0];
if( isSubmatrix() || dataend + step.p[0] > datalimit )
reserve( std::max(r + 1, (r*3+1)/2) );
size_t esz = elemSize();
memcpy(data + r*step.p[0], elem, esz);
size.p[0] = int(r + 1);
dataend += step.p[0];
uint64 tsz = size.p[0];
for( int i = 1; i < dims; i++ )
tsz *= size.p[i];
if( esz < step.p[0] || tsz != (uint64)(int)tsz )
flags &= ~CONTINUOUS_FLAG;
}
void Mat::reserve(size_t nelems)
{
const size_t MIN_SIZE = 64;
CV_Assert( (int)nelems >= 0 );
if( !isSubmatrix() && data + step.p[0]*nelems <= datalimit )
return;
int r = size.p[0];
if( (size_t)r >= nelems )
return;
size.p[0] = std::max((int)nelems, 1);
size_t newsize = total()*elemSize();
if( newsize < MIN_SIZE )
size.p[0] = (int)((MIN_SIZE + newsize - 1)*nelems/newsize);
Mat m(dims, size.p, type());
size.p[0] = r;
if( r > 0 )
{
Mat mpart = m.rowRange(0, r);
copyTo(mpart);
}
*this = m;
size.p[0] = r;
dataend = data + step.p[0]*r;
}
void Mat::reserveBuffer(size_t nbytes)
{
size_t esz = 1;
int mtype = CV_8UC1;
if (!empty())
{
if (!isSubmatrix() && data + nbytes <= dataend)//Should it be datalimit?
return;
esz = elemSize();
mtype = type();
}
size_t nelems = (nbytes - 1) / esz + 1;
#if SIZE_MAX > UINT_MAX
CV_Assert(nelems <= size_t(INT_MAX)*size_t(INT_MAX));
int newrows = nelems > size_t(INT_MAX) ? nelems > 0x400*size_t(INT_MAX) ? nelems > 0x100000 * size_t(INT_MAX) ? nelems > 0x40000000 * size_t(INT_MAX) ?
size_t(INT_MAX) : 0x40000000 : 0x100000 : 0x400 : 1;
#else
int newrows = nelems > size_t(INT_MAX) ? 2 : 1;
#endif
int newcols = (int)((nelems - 1) / newrows + 1);
create(newrows, newcols, mtype);
}
void Mat::resize(size_t nelems)
{
int saveRows = size.p[0];
if( saveRows == (int)nelems )
return;
CV_Assert( (int)nelems >= 0 );
if( isSubmatrix() || data + step.p[0]*nelems > datalimit )
reserve(nelems);
size.p[0] = (int)nelems;
dataend += (size.p[0] - saveRows)*step.p[0];
//updateContinuityFlag(*this);
}
void Mat::resize(size_t nelems, const Scalar& s)
{
int saveRows = size.p[0];
resize(nelems);
if( size.p[0] > saveRows )
{
Mat part = rowRange(saveRows, size.p[0]);
part = s;
}
}
void Mat::push_back(const Mat& elems)
{
size_t r = size.p[0];
size_t delta = elems.size.p[0];
if( delta == 0 )
return;
if( this == &elems )
{
Mat tmp = elems;
push_back(tmp);
return;
}
if( !data )
{
*this = elems.clone();
return;
}
size.p[0] = elems.size.p[0];
bool eq = size == elems.size;
size.p[0] = int(r);
if( !eq )
CV_Error(CV_StsUnmatchedSizes, "Pushed vector length is not equal to matrix row length");
if( type() != elems.type() )
CV_Error(CV_StsUnmatchedFormats, "Pushed vector type is not the same as matrix type");
if( isSubmatrix() || dataend + step.p[0]*delta > datalimit )
reserve( std::max(r + delta, (r*3+1)/2) );
size.p[0] += int(delta);
dataend += step.p[0]*delta;
//updateContinuityFlag(*this);
if( isContinuous() && elems.isContinuous() )
memcpy(data + r*step.p[0], elems.data, elems.total()*elems.elemSize());
else
{
Mat part = rowRange(int(r), int(r + delta));
elems.copyTo(part);
}
}
void Mat::locateROI( Size& wholeSize, Point& ofs ) const
{
CV_Assert( dims <= 2 && step[0] > 0 );
size_t esz = elemSize(), minstep;
ptrdiff_t delta1 = data - datastart, delta2 = dataend - datastart;
if( delta1 == 0 )
ofs.x = ofs.y = 0;
else
{
ofs.y = (int)(delta1/step[0]);
ofs.x = (int)((delta1 - step[0]*ofs.y)/esz);
CV_DbgAssert( data == datastart + ofs.y*step[0] + ofs.x*esz );
}
minstep = (ofs.x + cols)*esz;
wholeSize.height = (int)((delta2 - minstep)/step[0] + 1);
wholeSize.height = std::max(wholeSize.height, ofs.y + rows);
wholeSize.width = (int)((delta2 - step*(wholeSize.height-1))/esz);
wholeSize.width = std::max(wholeSize.width, ofs.x + cols);
}
Mat& Mat::adjustROI( int dtop, int dbottom, int dleft, int dright )
{
CV_Assert( dims <= 2 && step[0] > 0 );
Size wholeSize; Point ofs;
size_t esz = elemSize();
locateROI( wholeSize, ofs );
int row1 = std::min(std::max(ofs.y - dtop, 0), wholeSize.height), row2 = std::max(0, std::min(ofs.y + rows + dbottom, wholeSize.height));
int col1 = std::min(std::max(ofs.x - dleft, 0), wholeSize.width), col2 = std::max(0, std::min(ofs.x + cols + dright, wholeSize.width));
if(row1 > row2)
std::swap(row1, row2);
if(col1 > col2)
std::swap(col1, col2);
if (dims == 1) {
data += (col1 - ofs.x)*(std::ptrdiff_t)esz;
cols = col2 - col1;
size.p[0] = cols;
} else {
data += (row1 - ofs.y)*(std::ptrdiff_t)step + (col1 - ofs.x)*(std::ptrdiff_t)esz;
rows = row2 - row1; cols = col2 - col1;
size.p[0] = rows; size.p[1] = cols;
updateContinuityFlag();
}
return *this;
}
Mat Mat::reshape(int new_cn, int new_rows) const
{
int cn = channels();
Mat hdr = *this;
if( dims > 2 )
{
if( new_rows == 0 && new_cn != 0 && size[dims-1]*cn % new_cn == 0 )
{
hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn-1) << CV_CN_SHIFT);
hdr.step[dims-1] = CV_ELEM_SIZE(hdr.flags);
hdr.size[dims-1] = hdr.size[dims-1]*cn / new_cn;
return hdr;
}
if( new_rows > 0 )
{
int sz[] = { new_rows, (int)(total()*cn/new_rows) };
return reshape(new_cn, 2, sz);
}
}
CV_Assert( dims <= 2 );
if( new_cn == 0 )
new_cn = cn;
int total_width = cols * cn;
if( (new_cn > total_width || total_width % new_cn != 0) && new_rows == 0 )
new_rows = rows * total_width / new_cn;
if( new_rows != 0 && new_rows != rows )
{
int total_size = total_width * rows;
if( !isContinuous() )
CV_Error( CV_BadStep,
"The matrix is not continuous, thus its number of rows can not be changed" );
if( (unsigned)new_rows > (unsigned)total_size )
CV_Error( CV_StsOutOfRange, "Bad new number of rows" );
total_width = total_size / new_rows;
if( total_width * new_rows != total_size )
CV_Error( CV_StsBadArg, "The total number of matrix elements "
"is not divisible by the new number of rows" );
hdr.rows = new_rows;
hdr.step.buf[0] = total_width * elemSize1();
}
int new_width = total_width / new_cn;
if( new_width * new_cn != total_width )
CV_Error( CV_BadNumChannels,
"The total width is not divisible by the new number of channels" );
hdr.dims = 2;
hdr.cols = new_width;
hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn-1) << CV_CN_SHIFT);
hdr.step.buf[1] = CV_ELEM_SIZE(hdr.flags);
hdr.step.p = &hdr.step.buf[0];
hdr.size.p = &hdr.rows;
return hdr;
}
Mat Mat::reshape(int _cn, int _newndims, const int* _newsz) const
{
if(_newndims == dims)
{
if(_newsz == 0)
return reshape(_cn);
if(_newndims == 2)
return reshape(_cn, _newsz[0]);
}
if (isContinuous())
{
CV_Assert(_cn >= 0 && _newndims >= 0 && _newndims <= CV_MAX_DIM && (_newndims == 0 || _newsz != 0));
if (_cn == 0)
_cn = this->channels();
else
CV_Assert(_cn <= CV_CN_MAX);
size_t total_elem1_ref = this->total() * this->channels();
size_t total_elem1 = _cn;
AutoBuffer<int, 4> newsz_buf( (size_t)_newndims );
for (int i = 0; i < _newndims; i++)
{
CV_Assert(_newsz[i] >= 0);
if (_newsz[i] > 0)
newsz_buf[i] = _newsz[i];
else if (i < dims)
newsz_buf[i] = this->size[i];
else
CV_Error(CV_StsOutOfRange, "Copy dimension (which has zero size) is not present in source matrix");
total_elem1 *= (size_t)newsz_buf[i];
}
if (total_elem1 != total_elem1_ref)
CV_Error(CV_StsUnmatchedSizes, "Requested and source matrices have different count of elements");
Mat hdr = *this;
hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((_cn-1) << CV_CN_SHIFT);
setSize(hdr, _newndims, newsz_buf.data(), NULL, true);
return hdr;
}
CV_Error(CV_StsNotImplemented, "Reshaping of n-dimensional non-continuous matrices is not supported yet");
// TBD
}
Mat Mat::reshape(int _cn, const std::vector<int>& _newshape) const
{
int newdims = (int)_newshape.size();
if(newdims == 0 && empty())
{
return *this;
}
return reshape(_cn, newdims, newdims > 0 ? &_newshape[0] : 0);
}
Mat Mat::diag(const Mat& d)
{
CV_Assert( d.cols == 1 || d.rows == 1 );
int len = d.rows + d.cols - 1;
Mat m(len, len, d.type(), Scalar(0));
Mat md = m.diag();
if( d.cols == 1 )
d.copyTo(md);
else
transpose(d, md);
return m;
}
int Mat::checkVector(int _elemChannels, int _depth, bool _requireContinuous) const
{
return data && (depth() == _depth || _depth <= 0) &&
(isContinuous() || !_requireContinuous) &&
((dims <= 2 && (((rows == 1 || cols == 1) && channels() == _elemChannels) ||
(cols == _elemChannels && channels() == 1))) ||
(dims == 3 && channels() == 1 && size.p[2] == _elemChannels && (size.p[0] == 1 || size.p[1] == 1) &&
(isContinuous() || step.p[1] == step.p[2]*size.p[2])))
? (int)(total()*channels()/_elemChannels) : -1;
}
static inline Size getContinuousSize_(int flags, int cols, int rows, int widthScale)
{
int64 sz = (int64)cols * rows * widthScale;
bool has_int_overflow = sz >= INT_MAX;
bool isContiguous = (flags & Mat::CONTINUOUS_FLAG) != 0;
return (isContiguous && !has_int_overflow)
? Size((int)sz, 1)
: Size(cols * widthScale, rows);
}
Size getContinuousSize2D(Mat& m1, int widthScale)
{
CV_CheckLE(m1.dims, 2, "");
return getContinuousSize_(m1.flags,
m1.cols, m1.rows, widthScale);
}
Size getContinuousSize2D(Mat& m1, Mat& m2, int widthScale)
{
CV_CheckLE(m1.dims, 2, "");
CV_CheckLE(m2.dims, 2, "");
const Size sz1 = m1.size();
if (sz1 != m2.size()) // reshape all matrixes to the same size (#4159)
{
size_t total_sz = m1.total();
CV_CheckEQ(total_sz, m2.total(), "");
bool is_m1_vector = m1.cols == 1 || m1.rows == 1;
bool is_m2_vector = m2.cols == 1 || m2.rows == 1;
CV_Assert(is_m1_vector); CV_Assert(is_m2_vector);
int total = (int)total_sz; // vector-column
bool isContiguous = ((m1.flags & m2.flags) & Mat::CONTINUOUS_FLAG) != 0;
bool has_int_overflow = ((int64)total_sz * widthScale) >= INT_MAX;
if (isContiguous && !has_int_overflow)
total = 1; // vector-row
m1 = m1.reshape(0, total);
m2 = m2.reshape(0, total);
CV_Assert(m1.cols == m2.cols && m1.rows == m2.rows);
return Size(m1.cols * widthScale, m1.rows);
}
return getContinuousSize_(m1.flags & m2.flags,
m1.cols, m1.rows, widthScale);
}
Size getContinuousSize2D(Mat& m1, Mat& m2, Mat& m3, int widthScale)
{
CV_CheckLE(m1.dims, 2, "");
CV_CheckLE(m2.dims, 2, "");
CV_CheckLE(m3.dims, 2, "");
const Size sz1 = m1.size();
if (sz1 != m2.size() || sz1 != m3.size()) // reshape all matrixes to the same size (#4159)
{
size_t total_sz = m1.total();
CV_CheckEQ(total_sz, m2.total(), "");
CV_CheckEQ(total_sz, m3.total(), "");
bool is_m1_vector = m1.cols == 1 || m1.rows == 1;
bool is_m2_vector = m2.cols == 1 || m2.rows == 1;
bool is_m3_vector = m3.cols == 1 || m3.rows == 1;
CV_Assert(is_m1_vector); CV_Assert(is_m2_vector); CV_Assert(is_m3_vector);
int total = (int)total_sz; // vector-column
bool isContiguous = ((m1.flags & m2.flags & m3.flags) & Mat::CONTINUOUS_FLAG) != 0;
bool has_int_overflow = ((int64)total_sz * widthScale) >= INT_MAX;
if (isContiguous && !has_int_overflow)
total = 1; // vector-row
m1 = m1.reshape(0, total);
m2 = m2.reshape(0, total);
m3 = m3.reshape(0, total);
CV_Assert(m1.cols == m2.cols && m1.rows == m2.rows && m1.cols == m3.cols && m1.rows == m3.rows);
return Size(m1.cols * widthScale, m1.rows);
}
return getContinuousSize_(m1.flags & m2.flags & m3.flags,
m1.cols, m1.rows, widthScale);
}
} // cv::