mirror of
https://github.com/opencv/opencv.git
synced 2025-01-07 19:54:18 +08:00
1d18aba587
* started adding support for new types (16f, 16bf, 32u, 64u, 64s) to arithmetic functions * fixed several tests; refactored and extended sum(), extended inRange(). * extended countNonZero(), mean(), meanStdDev(), minMaxIdx(), norm() and sum() to support new types (F16, BF16, U32, U64, S64) * put missing CV_DEPTH_MAX to some function dispatcher tables * extended findnonzero, hasnonzero with the new types support * extended mixChannels() to support new types * minor fix * fixed a few compile errors on Linux and a few failures in core tests * fixed a few more warnings and test failures * trying to fix the remaining warnings and test failures. The test `MulTestGPU.MathOpTest` was disabled - not clear whether to set tolerance - it's not bit-exact operation, as possibly assumed by the test, due to the use of scale and possibly limited accuracy of the intermediate floating-point calculations. * found that in the current snapshot G-API produces incorrect results in Mul, Div and AddWeighted (at least when using OpenCL on Windows x64 or MacOS x64). Disabled the respective tests.
263 lines
9.1 KiB
C++
263 lines
9.1 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html
|
|
|
|
|
|
#include "precomp.hpp"
|
|
#include "opencl_kernels_core.hpp"
|
|
#include "stat.hpp"
|
|
|
|
#include "sum.simd.hpp"
|
|
#include "sum.simd_declarations.hpp" // defines CV_CPU_DISPATCH_MODES_ALL=AVX2,...,BASELINE based on CMakeLists.txt content
|
|
|
|
#ifndef OPENCV_IPP_SUM
|
|
#undef HAVE_IPP
|
|
#undef CV_IPP_RUN_FAST
|
|
#define CV_IPP_RUN_FAST(f, ...)
|
|
#undef CV_IPP_RUN
|
|
#define CV_IPP_RUN(c, f, ...)
|
|
#endif // OPENCV_IPP_SUM
|
|
|
|
namespace cv
|
|
{
|
|
|
|
SumFunc getSumFunc(int depth)
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
CV_CPU_DISPATCH(getSumFunc, (depth),
|
|
CV_CPU_DISPATCH_MODES_ALL);
|
|
}
|
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
bool ocl_sum( InputArray _src, Scalar & res, int sum_op, InputArray _mask,
|
|
InputArray _src2, bool calc2, const Scalar & res2 )
|
|
{
|
|
CV_Assert(sum_op == OCL_OP_SUM || sum_op == OCL_OP_SUM_ABS || sum_op == OCL_OP_SUM_SQR);
|
|
|
|
const ocl::Device & dev = ocl::Device::getDefault();
|
|
bool doubleSupport = dev.doubleFPConfig() > 0,
|
|
haveMask = _mask.kind() != _InputArray::NONE,
|
|
haveSrc2 = _src2.kind() != _InputArray::NONE;
|
|
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type),
|
|
kercn = cn == 1 && !haveMask ? ocl::predictOptimalVectorWidth(_src, _src2) : 1,
|
|
mcn = std::max(cn, kercn);
|
|
CV_Assert(!haveSrc2 || _src2.type() == type);
|
|
int convert_cn = haveSrc2 ? mcn : cn;
|
|
|
|
if ( (!doubleSupport && depth == CV_64F) || cn > 4 )
|
|
return false;
|
|
|
|
if (depth >= CV_16F)
|
|
return false;
|
|
|
|
int ngroups = dev.maxComputeUnits(), dbsize = ngroups * (calc2 ? 2 : 1);
|
|
size_t wgs = dev.maxWorkGroupSize();
|
|
|
|
int ddepth = std::max(sum_op == OCL_OP_SUM_SQR ? CV_32F : CV_32S, depth),
|
|
dtype = CV_MAKE_TYPE(ddepth, cn);
|
|
CV_Assert(!haveMask || _mask.type() == CV_8UC1);
|
|
|
|
int wgs2_aligned = 1;
|
|
while (wgs2_aligned < (int)wgs)
|
|
wgs2_aligned <<= 1;
|
|
wgs2_aligned >>= 1;
|
|
|
|
static const char * const opMap[3] = { "OP_SUM", "OP_SUM_ABS", "OP_SUM_SQR" };
|
|
char cvt[2][50];
|
|
String opts = format("-D srcT=%s -D srcT1=%s -D dstT=%s -D dstTK=%s -D dstT1=%s -D ddepth=%d -D cn=%d"
|
|
" -D convertToDT=%s -D %s -D WGS=%d -D WGS2_ALIGNED=%d%s%s%s%s -D kercn=%d%s%s%s -D convertFromU=%s",
|
|
ocl::typeToStr(CV_MAKE_TYPE(depth, mcn)), ocl::typeToStr(depth),
|
|
ocl::typeToStr(dtype), ocl::typeToStr(CV_MAKE_TYPE(ddepth, mcn)),
|
|
ocl::typeToStr(ddepth), ddepth, cn,
|
|
ocl::convertTypeStr(depth, ddepth, mcn, cvt[0], sizeof(cvt[0])),
|
|
opMap[sum_op], (int)wgs, wgs2_aligned,
|
|
doubleSupport ? " -D DOUBLE_SUPPORT" : "",
|
|
haveMask ? " -D HAVE_MASK" : "",
|
|
_src.isContinuous() ? " -D HAVE_SRC_CONT" : "",
|
|
haveMask && _mask.isContinuous() ? " -D HAVE_MASK_CONT" : "", kercn,
|
|
haveSrc2 ? " -D HAVE_SRC2" : "", calc2 ? " -D OP_CALC2" : "",
|
|
haveSrc2 && _src2.isContinuous() ? " -D HAVE_SRC2_CONT" : "",
|
|
depth <= CV_32S && ddepth == CV_32S ? ocl::convertTypeStr(CV_8U, ddepth, convert_cn, cvt[1], sizeof(cvt[1])) : "noconvert");
|
|
|
|
ocl::Kernel k("reduce", ocl::core::reduce_oclsrc, opts);
|
|
if (k.empty())
|
|
return false;
|
|
|
|
UMat src = _src.getUMat(), src2 = _src2.getUMat(),
|
|
db(1, dbsize, dtype), mask = _mask.getUMat();
|
|
|
|
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src),
|
|
dbarg = ocl::KernelArg::PtrWriteOnly(db),
|
|
maskarg = ocl::KernelArg::ReadOnlyNoSize(mask),
|
|
src2arg = ocl::KernelArg::ReadOnlyNoSize(src2);
|
|
|
|
if (haveMask)
|
|
{
|
|
if (haveSrc2)
|
|
k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg, maskarg, src2arg);
|
|
else
|
|
k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg, maskarg);
|
|
}
|
|
else
|
|
{
|
|
if (haveSrc2)
|
|
k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg, src2arg);
|
|
else
|
|
k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg);
|
|
}
|
|
|
|
size_t globalsize = ngroups * wgs;
|
|
if (k.run(1, &globalsize, &wgs, true))
|
|
{
|
|
typedef Scalar (*part_sum)(Mat m);
|
|
part_sum funcs[3] = { ocl_part_sum<int>, ocl_part_sum<float>, ocl_part_sum<double> },
|
|
func = funcs[ddepth - CV_32S];
|
|
|
|
Mat mres = db.getMat(ACCESS_READ);
|
|
if (calc2)
|
|
const_cast<Scalar &>(res2) = func(mres.colRange(ngroups, dbsize));
|
|
|
|
res = func(mres.colRange(0, ngroups));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef HAVE_IPP
|
|
static bool ipp_sum(Mat &src, Scalar &_res)
|
|
{
|
|
CV_INSTRUMENT_REGION_IPP();
|
|
|
|
#if IPP_VERSION_X100 >= 700
|
|
int cn = src.channels();
|
|
if (cn > 4)
|
|
return false;
|
|
size_t total_size = src.total();
|
|
int rows = src.size[0], cols = rows ? (int)(total_size/rows) : 0;
|
|
if( src.dims <= 2 || (src.isContinuous() && cols > 0 && (size_t)rows*cols == total_size) )
|
|
{
|
|
IppiSize sz = { cols, rows };
|
|
int type = src.type();
|
|
typedef IppStatus (CV_STDCALL* ippiSumFuncHint)(const void*, int, IppiSize, double *, IppHintAlgorithm);
|
|
typedef IppStatus (CV_STDCALL* ippiSumFuncNoHint)(const void*, int, IppiSize, double *);
|
|
ippiSumFuncHint ippiSumHint =
|
|
type == CV_32FC1 ? (ippiSumFuncHint)ippiSum_32f_C1R :
|
|
type == CV_32FC3 ? (ippiSumFuncHint)ippiSum_32f_C3R :
|
|
type == CV_32FC4 ? (ippiSumFuncHint)ippiSum_32f_C4R :
|
|
0;
|
|
ippiSumFuncNoHint ippiSum =
|
|
type == CV_8UC1 ? (ippiSumFuncNoHint)ippiSum_8u_C1R :
|
|
type == CV_8UC3 ? (ippiSumFuncNoHint)ippiSum_8u_C3R :
|
|
type == CV_8UC4 ? (ippiSumFuncNoHint)ippiSum_8u_C4R :
|
|
type == CV_16UC1 ? (ippiSumFuncNoHint)ippiSum_16u_C1R :
|
|
type == CV_16UC3 ? (ippiSumFuncNoHint)ippiSum_16u_C3R :
|
|
type == CV_16UC4 ? (ippiSumFuncNoHint)ippiSum_16u_C4R :
|
|
type == CV_16SC1 ? (ippiSumFuncNoHint)ippiSum_16s_C1R :
|
|
type == CV_16SC3 ? (ippiSumFuncNoHint)ippiSum_16s_C3R :
|
|
type == CV_16SC4 ? (ippiSumFuncNoHint)ippiSum_16s_C4R :
|
|
0;
|
|
CV_Assert(!ippiSumHint || !ippiSum);
|
|
if( ippiSumHint || ippiSum )
|
|
{
|
|
Ipp64f res[4];
|
|
IppStatus ret = ippiSumHint ?
|
|
CV_INSTRUMENT_FUN_IPP(ippiSumHint, src.ptr(), (int)src.step[0], sz, res, ippAlgHintAccurate) :
|
|
CV_INSTRUMENT_FUN_IPP(ippiSum, src.ptr(), (int)src.step[0], sz, res);
|
|
if( ret >= 0 )
|
|
{
|
|
for( int i = 0; i < cn; i++ )
|
|
_res[i] = res[i];
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
CV_UNUSED(src); CV_UNUSED(_res);
|
|
#endif
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
Scalar sum(InputArray _src)
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
#if defined HAVE_OPENCL || defined HAVE_IPP
|
|
Scalar _res;
|
|
#endif
|
|
|
|
#ifdef HAVE_OPENCL
|
|
CV_OCL_RUN_(OCL_PERFORMANCE_CHECK(_src.isUMat()) && _src.dims() <= 2,
|
|
ocl_sum(_src, _res, OCL_OP_SUM),
|
|
_res)
|
|
#endif
|
|
|
|
Mat src = _src.getMat();
|
|
CV_IPP_RUN(IPP_VERSION_X100 >= 700, ipp_sum(src, _res), _res);
|
|
|
|
int k, cn = src.channels(), depth = src.depth();
|
|
SumFunc func = getSumFunc(depth);
|
|
if (func == nullptr) {
|
|
if (depth == CV_Bool && cn == 1)
|
|
return Scalar((double)countNonZero(src));
|
|
CV_Error(Error::StsNotImplemented, "");
|
|
}
|
|
CV_Assert( cn <= 4 && func != 0 );
|
|
|
|
const Mat* arrays[] = {&src, 0};
|
|
uchar* ptrs[1] = {};
|
|
NAryMatIterator it(arrays, ptrs);
|
|
Scalar s;
|
|
int total = (int)it.size, blockSize = total, partialBlockSize = 0;
|
|
int j, count = 0;
|
|
int _buf[CV_CN_MAX];
|
|
int* buf = (int*)&s[0];
|
|
size_t esz = 0;
|
|
bool partialSumIsInt = depth < CV_32S;
|
|
bool blockSum = partialSumIsInt || depth == CV_16F || depth == CV_16BF;
|
|
|
|
if( blockSum )
|
|
{
|
|
partialBlockSize = depth <= CV_8S ? (1 << 23) : (1 << 15);
|
|
blockSize = std::min(blockSize, partialBlockSize);
|
|
buf = _buf;
|
|
for( k = 0; k < cn; k++ )
|
|
buf[k] = 0;
|
|
esz = src.elemSize();
|
|
}
|
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it )
|
|
{
|
|
for( j = 0; j < total; j += blockSize )
|
|
{
|
|
int bsz = std::min(total - j, blockSize);
|
|
func( ptrs[0], 0, (uchar*)buf, bsz, cn );
|
|
count += bsz;
|
|
if( blockSum && (count + blockSize >= partialBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) )
|
|
{
|
|
if (partialSumIsInt) {
|
|
for( k = 0; k < cn; k++ )
|
|
{
|
|
s[k] += buf[k];
|
|
buf[k] = 0;
|
|
}
|
|
} else {
|
|
for( k = 0; k < cn; k++ )
|
|
{
|
|
s[k] += ((float*)buf)[k];
|
|
buf[k] = 0;
|
|
}
|
|
}
|
|
count = 0;
|
|
}
|
|
ptrs[0] += bsz*esz;
|
|
}
|
|
}
|
|
return s;
|
|
}
|
|
|
|
} // namespace
|