mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
5ff1fababc
ml: refactored tests * use parametrized tests where appropriate * use stable theRNG in most tests * use modern style with EXPECT_/ASSERT_ checks
201 lines
6.6 KiB
C++
201 lines
6.6 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
// #define GENERATE_TESTDATA
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
struct Activation
|
|
{
|
|
int id;
|
|
const char * name;
|
|
};
|
|
void PrintTo(const Activation &a, std::ostream *os) { *os << a.name; }
|
|
|
|
Activation activation_list[] =
|
|
{
|
|
{ ml::ANN_MLP::IDENTITY, "identity" },
|
|
{ ml::ANN_MLP::SIGMOID_SYM, "sigmoid_sym" },
|
|
{ ml::ANN_MLP::GAUSSIAN, "gaussian" },
|
|
{ ml::ANN_MLP::RELU, "relu" },
|
|
{ ml::ANN_MLP::LEAKYRELU, "leakyrelu" },
|
|
};
|
|
|
|
typedef testing::TestWithParam< Activation > ML_ANN_Params;
|
|
|
|
TEST_P(ML_ANN_Params, ActivationFunction)
|
|
{
|
|
const Activation &activation = GetParam();
|
|
const string dataname = "waveform";
|
|
const string data_path = findDataFile(dataname + ".data");
|
|
const string model_name = dataname + "_" + activation.name + ".yml";
|
|
|
|
Ptr<TrainData> tdata = TrainData::loadFromCSV(data_path, 0);
|
|
ASSERT_FALSE(tdata.empty());
|
|
|
|
// hack?
|
|
const uint64 old_state = theRNG().state;
|
|
theRNG().state = 1027401484159173092;
|
|
tdata->setTrainTestSplit(500);
|
|
theRNG().state = old_state;
|
|
|
|
Mat_<int> layerSizes(1, 4);
|
|
layerSizes(0, 0) = tdata->getNVars();
|
|
layerSizes(0, 1) = 100;
|
|
layerSizes(0, 2) = 100;
|
|
layerSizes(0, 3) = tdata->getResponses().cols;
|
|
|
|
Mat testSamples = tdata->getTestSamples();
|
|
Mat rx, ry;
|
|
|
|
{
|
|
Ptr<ml::ANN_MLP> x = ml::ANN_MLP::create();
|
|
x->setActivationFunction(activation.id);
|
|
x->setLayerSizes(layerSizes);
|
|
x->setTrainMethod(ml::ANN_MLP::RPROP, 0.01, 0.1);
|
|
x->setTermCriteria(TermCriteria(TermCriteria::COUNT, 300, 0.01));
|
|
x->train(tdata, ml::ANN_MLP::NO_OUTPUT_SCALE);
|
|
ASSERT_TRUE(x->isTrained());
|
|
x->predict(testSamples, rx);
|
|
#ifdef GENERATE_TESTDATA
|
|
x->save(cvtest::TS::ptr()->get_data_path() + model_name);
|
|
#endif
|
|
}
|
|
|
|
{
|
|
const string model_path = findDataFile(model_name);
|
|
Ptr<ml::ANN_MLP> y = Algorithm::load<ANN_MLP>(model_path);
|
|
ASSERT_TRUE(y);
|
|
y->predict(testSamples, ry);
|
|
EXPECT_MAT_NEAR(rx, ry, FLT_EPSILON);
|
|
}
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, ML_ANN_Params, testing::ValuesIn(activation_list));
|
|
|
|
//==================================================================================================
|
|
|
|
CV_ENUM(ANN_MLP_METHOD, ANN_MLP::RPROP, ANN_MLP::ANNEAL)
|
|
|
|
typedef tuple<ANN_MLP_METHOD, string, int> ML_ANN_METHOD_Params;
|
|
typedef TestWithParam<ML_ANN_METHOD_Params> ML_ANN_METHOD;
|
|
|
|
TEST_P(ML_ANN_METHOD, Test)
|
|
{
|
|
int methodType = get<0>(GetParam());
|
|
string methodName = get<1>(GetParam());
|
|
int N = get<2>(GetParam());
|
|
|
|
String folder = string(cvtest::TS::ptr()->get_data_path());
|
|
String original_path = findDataFile("waveform.data");
|
|
string dataname = "waveform_" + methodName;
|
|
string weight_name = dataname + "_init_weight.yml.gz";
|
|
string model_name = dataname + ".yml.gz";
|
|
string response_name = dataname + "_response.yml.gz";
|
|
|
|
Ptr<TrainData> tdata2 = TrainData::loadFromCSV(original_path, 0);
|
|
ASSERT_FALSE(tdata2.empty());
|
|
|
|
Mat samples = tdata2->getSamples()(Range(0, N), Range::all());
|
|
Mat responses(N, 3, CV_32FC1, Scalar(0));
|
|
for (int i = 0; i < N; i++)
|
|
responses.at<float>(i, static_cast<int>(tdata2->getResponses().at<float>(i, 0))) = 1;
|
|
|
|
Ptr<TrainData> tdata = TrainData::create(samples, ml::ROW_SAMPLE, responses);
|
|
ASSERT_FALSE(tdata.empty());
|
|
|
|
// hack?
|
|
const uint64 old_state = theRNG().state;
|
|
theRNG().state = 0;
|
|
tdata->setTrainTestSplitRatio(0.8);
|
|
theRNG().state = old_state;
|
|
|
|
Mat testSamples = tdata->getTestSamples();
|
|
|
|
// train 1st stage
|
|
|
|
Ptr<ml::ANN_MLP> xx = ml::ANN_MLP_ANNEAL::create();
|
|
Mat_<int> layerSizes(1, 4);
|
|
layerSizes(0, 0) = tdata->getNVars();
|
|
layerSizes(0, 1) = 30;
|
|
layerSizes(0, 2) = 30;
|
|
layerSizes(0, 3) = tdata->getResponses().cols;
|
|
xx->setLayerSizes(layerSizes);
|
|
xx->setActivationFunction(ml::ANN_MLP::SIGMOID_SYM);
|
|
xx->setTrainMethod(ml::ANN_MLP::RPROP);
|
|
xx->setTermCriteria(TermCriteria(TermCriteria::COUNT, 1, 0.01));
|
|
xx->train(tdata, ml::ANN_MLP::NO_OUTPUT_SCALE + ml::ANN_MLP::NO_INPUT_SCALE);
|
|
#ifdef GENERATE_TESTDATA
|
|
{
|
|
FileStorage fs;
|
|
fs.open(cvtest::TS::ptr()->get_data_path() + weight_name, FileStorage::WRITE + FileStorage::BASE64);
|
|
xx->write(fs);
|
|
}
|
|
#endif
|
|
|
|
// train 2nd stage
|
|
Mat r_gold;
|
|
Ptr<ml::ANN_MLP> x = ml::ANN_MLP_ANNEAL::create();
|
|
{
|
|
const string weight_file = findDataFile(weight_name);
|
|
FileStorage fs;
|
|
fs.open(weight_file, FileStorage::READ);
|
|
x->read(fs.root());
|
|
}
|
|
x->setTrainMethod(methodType);
|
|
if (methodType == ml::ANN_MLP::ANNEAL)
|
|
{
|
|
x->setAnnealEnergyRNG(RNG(CV_BIG_INT(0xffffffff)));
|
|
x->setAnnealInitialT(12);
|
|
x->setAnnealFinalT(0.15);
|
|
x->setAnnealCoolingRatio(0.96);
|
|
x->setAnnealItePerStep(11);
|
|
}
|
|
x->setTermCriteria(TermCriteria(TermCriteria::COUNT, 100, 0.01));
|
|
x->train(tdata, ml::ANN_MLP::NO_OUTPUT_SCALE + ml::ANN_MLP::NO_INPUT_SCALE + ml::ANN_MLP::UPDATE_WEIGHTS);
|
|
ASSERT_TRUE(x->isTrained());
|
|
#ifdef GENERATE_TESTDATA
|
|
x->save(cvtest::TS::ptr()->get_data_path() + model_name);
|
|
x->predict(testSamples, r_gold);
|
|
{
|
|
FileStorage fs_response(cvtest::TS::ptr()->get_data_path() + response_name, FileStorage::WRITE + FileStorage::BASE64);
|
|
fs_response << "response" << r_gold;
|
|
}
|
|
#endif
|
|
{
|
|
const string response_file = findDataFile(response_name);
|
|
FileStorage fs_response(response_file, FileStorage::READ);
|
|
fs_response["response"] >> r_gold;
|
|
}
|
|
ASSERT_FALSE(r_gold.empty());
|
|
|
|
// verify
|
|
const string model_file = findDataFile(model_name);
|
|
Ptr<ml::ANN_MLP> y = Algorithm::load<ANN_MLP>(model_file);
|
|
ASSERT_TRUE(y);
|
|
Mat rx, ry;
|
|
for (int j = 0; j < 4; j++)
|
|
{
|
|
rx = x->getWeights(j);
|
|
ry = y->getWeights(j);
|
|
EXPECT_MAT_NEAR(rx, ry, FLT_EPSILON) << "Weights are not equal for layer: " << j;
|
|
}
|
|
x->predict(testSamples, rx);
|
|
y->predict(testSamples, ry);
|
|
EXPECT_MAT_NEAR(ry, rx, FLT_EPSILON) << "Predict are not equal to result of the saved model";
|
|
EXPECT_MAT_NEAR(r_gold, rx, FLT_EPSILON) << "Predict are not equal to 'gold' response";
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(/*none*/, ML_ANN_METHOD,
|
|
testing::Values(
|
|
ML_ANN_METHOD_Params(ml::ANN_MLP::RPROP, "rprop", 5000),
|
|
ML_ANN_METHOD_Params(ml::ANN_MLP::ANNEAL, "anneal", 1000)
|
|
// ML_ANN_METHOD_Params(ml::ANN_MLP::BACKPROP, "backprop", 500) -----> NO BACKPROP TEST
|
|
)
|
|
);
|
|
|
|
}} // namespace
|