mirror of
https://github.com/opencv/opencv.git
synced 2025-06-09 18:43:05 +08:00
926 lines
29 KiB
C++
926 lines
29 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
#include "precomp.hpp"
|
|
#include "opencv2/core/hal/intrin.hpp"
|
|
|
|
using namespace cv;
|
|
|
|
CV_IMPL CvRect
|
|
cvMaxRect( const CvRect* rect1, const CvRect* rect2 )
|
|
{
|
|
if( rect1 && rect2 )
|
|
{
|
|
cv::Rect max_rect;
|
|
int a, b;
|
|
|
|
max_rect.x = a = rect1->x;
|
|
b = rect2->x;
|
|
if( max_rect.x > b )
|
|
max_rect.x = b;
|
|
|
|
max_rect.width = a += rect1->width;
|
|
b += rect2->width;
|
|
|
|
if( max_rect.width < b )
|
|
max_rect.width = b;
|
|
max_rect.width -= max_rect.x;
|
|
|
|
max_rect.y = a = rect1->y;
|
|
b = rect2->y;
|
|
if( max_rect.y > b )
|
|
max_rect.y = b;
|
|
|
|
max_rect.height = a += rect1->height;
|
|
b += rect2->height;
|
|
|
|
if( max_rect.height < b )
|
|
max_rect.height = b;
|
|
max_rect.height -= max_rect.y;
|
|
return cvRect(max_rect);
|
|
}
|
|
else if( rect1 )
|
|
return *rect1;
|
|
else if( rect2 )
|
|
return *rect2;
|
|
else
|
|
return cvRect(0,0,0,0);
|
|
}
|
|
|
|
|
|
CV_IMPL void
|
|
cvBoxPoints( CvBox2D box, CvPoint2D32f pt[4] )
|
|
{
|
|
if( !pt )
|
|
CV_Error( cv::Error::StsNullPtr, "NULL vertex array pointer" );
|
|
cv::RotatedRect(box).points((cv::Point2f*)pt);
|
|
}
|
|
|
|
|
|
double cv::pointPolygonTest( InputArray _contour, Point2f pt, bool measureDist )
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
double result = 0;
|
|
Mat contour = _contour.getMat();
|
|
int i, total = contour.checkVector(2), counter = 0;
|
|
int depth = contour.depth();
|
|
CV_Assert( total >= 0 && (depth == CV_32S || depth == CV_32F));
|
|
|
|
bool is_float = depth == CV_32F;
|
|
double min_dist_num = FLT_MAX, min_dist_denom = 1;
|
|
Point ip(cvRound(pt.x), cvRound(pt.y));
|
|
|
|
if( total == 0 )
|
|
return measureDist ? -DBL_MAX : -1;
|
|
|
|
const Point* cnt = contour.ptr<Point>();
|
|
const Point2f* cntf = (const Point2f*)cnt;
|
|
|
|
if( !is_float && !measureDist && ip.x == pt.x && ip.y == pt.y )
|
|
{
|
|
// the fastest "purely integer" branch
|
|
Point v0, v = cnt[total-1];
|
|
|
|
for( i = 0; i < total; i++ )
|
|
{
|
|
v0 = v;
|
|
v = cnt[i];
|
|
|
|
if( (v0.y <= ip.y && v.y <= ip.y) ||
|
|
(v0.y > ip.y && v.y > ip.y) ||
|
|
(v0.x < ip.x && v.x < ip.x) )
|
|
{
|
|
if( ip.y == v.y && (ip.x == v.x || (ip.y == v0.y &&
|
|
((v0.x <= ip.x && ip.x <= v.x) || (v.x <= ip.x && ip.x <= v0.x)))) )
|
|
return 0;
|
|
continue;
|
|
}
|
|
|
|
int64 dist = static_cast<int64>(ip.y - v0.y)*(v.x - v0.x)
|
|
- static_cast<int64>(ip.x - v0.x)*(v.y - v0.y);
|
|
if( dist == 0 )
|
|
return 0;
|
|
if( v.y < v0.y )
|
|
dist = -dist;
|
|
counter += dist > 0;
|
|
}
|
|
|
|
result = counter % 2 == 0 ? -1 : 1;
|
|
}
|
|
else
|
|
{
|
|
Point2f v0, v;
|
|
|
|
if( is_float )
|
|
{
|
|
v = cntf[total-1];
|
|
}
|
|
else
|
|
{
|
|
v = cnt[total-1];
|
|
}
|
|
|
|
if( !measureDist )
|
|
{
|
|
for( i = 0; i < total; i++ )
|
|
{
|
|
double dist;
|
|
v0 = v;
|
|
if( is_float )
|
|
v = cntf[i];
|
|
else
|
|
v = cnt[i];
|
|
|
|
if( (v0.y <= pt.y && v.y <= pt.y) ||
|
|
(v0.y > pt.y && v.y > pt.y) ||
|
|
(v0.x < pt.x && v.x < pt.x) )
|
|
{
|
|
if( pt.y == v.y && (pt.x == v.x || (pt.y == v0.y &&
|
|
((v0.x <= pt.x && pt.x <= v.x) || (v.x <= pt.x && pt.x <= v0.x)))) )
|
|
return 0;
|
|
continue;
|
|
}
|
|
|
|
dist = (double)(pt.y - v0.y)*(v.x - v0.x) - (double)(pt.x - v0.x)*(v.y - v0.y);
|
|
if( dist == 0 )
|
|
return 0;
|
|
if( v.y < v0.y )
|
|
dist = -dist;
|
|
counter += dist > 0;
|
|
}
|
|
|
|
result = counter % 2 == 0 ? -1 : 1;
|
|
}
|
|
else
|
|
{
|
|
for( i = 0; i < total; i++ )
|
|
{
|
|
double dx, dy, dx1, dy1, dx2, dy2, dist_num, dist_denom = 1;
|
|
|
|
v0 = v;
|
|
if( is_float )
|
|
v = cntf[i];
|
|
else
|
|
v = cnt[i];
|
|
|
|
dx = v.x - v0.x; dy = v.y - v0.y;
|
|
dx1 = pt.x - v0.x; dy1 = pt.y - v0.y;
|
|
dx2 = pt.x - v.x; dy2 = pt.y - v.y;
|
|
|
|
if( dx1*dx + dy1*dy <= 0 )
|
|
dist_num = dx1*dx1 + dy1*dy1;
|
|
else if( dx2*dx + dy2*dy >= 0 )
|
|
dist_num = dx2*dx2 + dy2*dy2;
|
|
else
|
|
{
|
|
dist_num = (dy1*dx - dx1*dy);
|
|
dist_num *= dist_num;
|
|
dist_denom = dx*dx + dy*dy;
|
|
}
|
|
|
|
if( dist_num*min_dist_denom < min_dist_num*dist_denom )
|
|
{
|
|
min_dist_num = dist_num;
|
|
min_dist_denom = dist_denom;
|
|
if( min_dist_num == 0 )
|
|
break;
|
|
}
|
|
|
|
if( (v0.y <= pt.y && v.y <= pt.y) ||
|
|
(v0.y > pt.y && v.y > pt.y) ||
|
|
(v0.x < pt.x && v.x < pt.x) )
|
|
continue;
|
|
|
|
dist_num = dy1*dx - dx1*dy;
|
|
if( dy < 0 )
|
|
dist_num = -dist_num;
|
|
counter += dist_num > 0;
|
|
}
|
|
|
|
result = std::sqrt(min_dist_num/min_dist_denom);
|
|
if( counter % 2 == 0 )
|
|
result = -result;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
CV_IMPL double
|
|
cvPointPolygonTest( const CvArr* _contour, CvPoint2D32f pt, int measure_dist )
|
|
{
|
|
cv::AutoBuffer<double> abuf;
|
|
cv::Mat contour = cv::cvarrToMat(_contour, false, false, 0, &abuf);
|
|
return cv::pointPolygonTest(contour, pt, measure_dist != 0);
|
|
}
|
|
|
|
/*
|
|
This code is described in "Computational Geometry in C" (Second Edition),
|
|
Chapter 7. It is not written to be comprehensible without the
|
|
explanation in that book.
|
|
|
|
Written by Joseph O'Rourke.
|
|
Last modified: December 1997
|
|
Questions to orourke@cs.smith.edu.
|
|
--------------------------------------------------------------------
|
|
This code is Copyright 1997 by Joseph O'Rourke. It may be freely
|
|
redistributed in its entirety provided that this copyright notice is
|
|
not removed.
|
|
--------------------------------------------------------------------
|
|
*/
|
|
|
|
namespace cv
|
|
{
|
|
typedef enum { Pin, Qin, Unknown } tInFlag;
|
|
|
|
static int areaSign( Point2f a, Point2f b, Point2f c )
|
|
{
|
|
static const double eps = 1e-5;
|
|
double area2 = (b.x - a.x) * (double)(c.y - a.y) - (c.x - a.x ) * (double)(b.y - a.y);
|
|
return area2 > eps ? 1 : area2 < -eps ? -1 : 0;
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
// Returns true iff point c lies on the closed segment ab.
|
|
// Assumes it is already known that abc are collinear.
|
|
//---------------------------------------------------------------------
|
|
static bool between( Point2f a, Point2f b, Point2f c )
|
|
{
|
|
Point2f ba, ca;
|
|
|
|
// If ab not vertical, check betweenness on x; else on y.
|
|
if ( a.x != b.x )
|
|
return ((a.x <= c.x) && (c.x <= b.x)) ||
|
|
((a.x >= c.x) && (c.x >= b.x));
|
|
else
|
|
return ((a.y <= c.y) && (c.y <= b.y)) ||
|
|
((a.y >= c.y) && (c.y >= b.y));
|
|
}
|
|
|
|
enum LineSegmentIntersection
|
|
{
|
|
LS_NO_INTERSECTION = 0,
|
|
LS_SINGLE_INTERSECTION = 1,
|
|
LS_OVERLAP = 2,
|
|
LS_ENDPOINT_INTERSECTION = 3
|
|
};
|
|
|
|
static LineSegmentIntersection parallelInt( Point2f a, Point2f b, Point2f c, Point2f d, Point2f& p, Point2f& q )
|
|
{
|
|
LineSegmentIntersection code = LS_OVERLAP;
|
|
if( areaSign(a, b, c) != 0 )
|
|
code = LS_NO_INTERSECTION;
|
|
else if( between(a, b, c) && between(a, b, d))
|
|
p = c, q = d;
|
|
else if( between(c, d, a) && between(c, d, b))
|
|
p = a, q = b;
|
|
else if( between(a, b, c) && between(c, d, b))
|
|
p = c, q = b;
|
|
else if( between(a, b, c) && between(c, d, a))
|
|
p = c, q = a;
|
|
else if( between(a, b, d) && between(c, d, b))
|
|
p = d, q = b;
|
|
else if( between(a, b, d) && between(c, d, a))
|
|
p = d, q = a;
|
|
else
|
|
code = LS_NO_INTERSECTION;
|
|
return code;
|
|
}
|
|
|
|
// Finds intersection of two line segments: (a, b) and (c, d).
|
|
static LineSegmentIntersection intersectLineSegments( Point2f a, Point2f b, Point2f c,
|
|
Point2f d, Point2f& p, Point2f& q )
|
|
{
|
|
double denom = (a.x - b.x) * (double)(d.y - c.y) - (a.y - b.y) * (double)(d.x - c.x);
|
|
|
|
// If denom is zero, then segments are parallel: handle separately.
|
|
if( denom == 0. )
|
|
return parallelInt(a, b, c, d, p, q);
|
|
|
|
double num = (d.y - a.y) * (double)(a.x - c.x) + (a.x - d.x) * (double)(a.y - c.y);
|
|
double s = num / denom;
|
|
|
|
num = (b.y - a.y) * (double)(a.x - c.x) + (c.y - a.y) * (double)(b.x - a.x);
|
|
double t = num / denom;
|
|
|
|
p.x = (float)(a.x + s*(b.x - a.x));
|
|
p.y = (float)(a.y + s*(b.y - a.y));
|
|
q = p;
|
|
|
|
return s < 0. || s > 1. || t < 0. || t > 1. ? LS_NO_INTERSECTION :
|
|
s == 0. || s == 1. || t == 0. || t == 1. ? LS_ENDPOINT_INTERSECTION : LS_SINGLE_INTERSECTION;
|
|
}
|
|
|
|
static tInFlag inOut( Point2f p, tInFlag inflag, int aHB, int bHA, Point2f*& result )
|
|
{
|
|
if( p != result[-1] )
|
|
*result++ = p;
|
|
// Update inflag.
|
|
return aHB > 0 ? Pin : bHA > 0 ? Qin : inflag;
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
// Advances and prints out an inside vertex if appropriate.
|
|
//---------------------------------------------------------------------
|
|
static int advance( int a, int *aa, int n, bool inside, Point2f v, Point2f*& result )
|
|
{
|
|
if( inside && v != result[-1] )
|
|
*result++ = v;
|
|
(*aa)++;
|
|
return (a+1) % n;
|
|
}
|
|
|
|
static void addSharedSeg( Point2f p, Point2f q, Point2f*& result )
|
|
{
|
|
if( p != result[-1] )
|
|
*result++ = p;
|
|
if( q != result[-1] )
|
|
*result++ = q;
|
|
}
|
|
|
|
|
|
static int intersectConvexConvex_( const Point2f* P, int n, const Point2f* Q, int m,
|
|
Point2f* result, float* _area )
|
|
{
|
|
Point2f* result0 = result;
|
|
// P has n vertices, Q has m vertices.
|
|
int a=0, b=0; // indices on P and Q (resp.)
|
|
Point2f Origin(0,0);
|
|
tInFlag inflag=Unknown; // {Pin, Qin, Unknown}: which inside
|
|
int aa=0, ba=0; // # advances on a & b indices (after 1st inter.)
|
|
bool FirstPoint=true;// Is this the first point? (used to initialize).
|
|
Point2f p0; // The first point.
|
|
*result++ = Point2f(FLT_MAX, FLT_MAX);
|
|
|
|
do
|
|
{
|
|
// Computations of key variables.
|
|
int a1 = (a + n - 1) % n; // a-1, b-1 (resp.)
|
|
int b1 = (b + m - 1) % m;
|
|
|
|
Point2f A = P[a] - P[a1], B = Q[b] - Q[b1]; // directed edges on P and Q (resp.)
|
|
|
|
int cross = areaSign( Origin, A, B ); // sign of z-component of A x B
|
|
int aHB = areaSign( Q[b1], Q[b], P[a] ); // a in H(b).
|
|
int bHA = areaSign( P[a1], P[a], Q[b] ); // b in H(A);
|
|
|
|
// If A & B intersect, update inflag.
|
|
Point2f p, q;
|
|
LineSegmentIntersection code = intersectLineSegments( P[a1], P[a], Q[b1], Q[b], p, q );
|
|
if( code == LS_SINGLE_INTERSECTION || code == LS_ENDPOINT_INTERSECTION )
|
|
{
|
|
if( inflag == Unknown && FirstPoint )
|
|
{
|
|
aa = ba = 0;
|
|
FirstPoint = false;
|
|
p0 = p;
|
|
*result++ = p;
|
|
}
|
|
inflag = inOut( p, inflag, aHB, bHA, result );
|
|
}
|
|
|
|
//-----Advance rules-----
|
|
|
|
// Special case: A & B overlap and oppositely oriented.
|
|
if( code == LS_OVERLAP && A.ddot(B) < 0 )
|
|
{
|
|
addSharedSeg( p, q, result );
|
|
return (int)(result - result0);
|
|
}
|
|
|
|
// Special case: A & B parallel and separated.
|
|
if( cross == 0 && aHB < 0 && bHA < 0 )
|
|
return (int)(result - result0);
|
|
|
|
// Special case: A & B collinear.
|
|
else if ( cross == 0 && aHB == 0 && bHA == 0 ) {
|
|
// Advance but do not output point.
|
|
if ( inflag == Pin )
|
|
b = advance( b, &ba, m, inflag == Qin, Q[b], result );
|
|
else
|
|
a = advance( a, &aa, n, inflag == Pin, P[a], result );
|
|
}
|
|
|
|
// Generic cases.
|
|
else if( cross >= 0 )
|
|
{
|
|
if( bHA > 0)
|
|
a = advance( a, &aa, n, inflag == Pin, P[a], result );
|
|
else
|
|
b = advance( b, &ba, m, inflag == Qin, Q[b], result );
|
|
}
|
|
else
|
|
{
|
|
if( aHB > 0)
|
|
b = advance( b, &ba, m, inflag == Qin, Q[b], result );
|
|
else
|
|
a = advance( a, &aa, n, inflag == Pin, P[a], result );
|
|
}
|
|
// Quit when both adv. indices have cycled, or one has cycled twice.
|
|
}
|
|
while ( ((aa < n) || (ba < m)) && (aa < 2*n) && (ba < 2*m) );
|
|
|
|
// Deal with special cases: not implemented.
|
|
if( inflag == Unknown )
|
|
{
|
|
// The boundaries of P and Q do not cross.
|
|
// ...
|
|
}
|
|
|
|
int i, nr = (int)(result - result0);
|
|
double area = 0;
|
|
Point2f prev = result0[nr-1];
|
|
for( i = 1; i < nr; i++ )
|
|
{
|
|
result0[i-1] = result0[i];
|
|
area += (double)prev.x*result0[i].y - (double)prev.y*result0[i].x;
|
|
prev = result0[i];
|
|
}
|
|
|
|
*_area = (float)(area*0.5);
|
|
|
|
if( result0[nr-2] == result0[0] && nr > 1 )
|
|
nr--;
|
|
return nr-1;
|
|
}
|
|
|
|
}
|
|
|
|
float cv::intersectConvexConvex( InputArray _p1, InputArray _p2, OutputArray _p12, bool handleNested )
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
Mat p1 = _p1.getMat(), p2 = _p2.getMat();
|
|
CV_Assert( p1.depth() == CV_32S || p1.depth() == CV_32F );
|
|
CV_Assert( p2.depth() == CV_32S || p2.depth() == CV_32F );
|
|
|
|
int n = p1.checkVector(2, p1.depth(), true);
|
|
int m = p2.checkVector(2, p2.depth(), true);
|
|
|
|
CV_Assert( n >= 0 && m >= 0 );
|
|
|
|
if( n < 2 || m < 2 )
|
|
{
|
|
_p12.release();
|
|
return 0.f;
|
|
}
|
|
|
|
AutoBuffer<Point2f> _result(n*2 + m*2 + 1);
|
|
Point2f *fp1 = _result.data(), *fp2 = fp1 + n;
|
|
Point2f* result = fp2 + m;
|
|
int orientation = 0;
|
|
|
|
for( int k = 1; k <= 2; k++ )
|
|
{
|
|
Mat& p = k == 1 ? p1 : p2;
|
|
int len = k == 1 ? n : m;
|
|
Point2f* dst = k == 1 ? fp1 : fp2;
|
|
|
|
Mat temp(p.size(), CV_MAKETYPE(CV_32F, p.channels()), dst);
|
|
p.convertTo(temp, CV_32F);
|
|
CV_Assert( temp.ptr<Point2f>() == dst );
|
|
Point2f diff0 = dst[0] - dst[len-1];
|
|
for( int i = 1; i < len; i++ )
|
|
{
|
|
double s = diff0.cross(dst[i] - dst[i-1]);
|
|
if( s != 0 )
|
|
{
|
|
if( s < 0 )
|
|
{
|
|
orientation++;
|
|
flip( temp, temp, temp.rows > 1 ? 0 : 1 );
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
float area = 0.f;
|
|
int nr = intersectConvexConvex_(fp1, n, fp2, m, result, &area);
|
|
if( nr == 0 )
|
|
{
|
|
if( !handleNested )
|
|
{
|
|
_p12.release();
|
|
return 0.f;
|
|
}
|
|
|
|
bool intersected = false;
|
|
|
|
// check if all of fp2's vertices is inside/on the edge of fp1.
|
|
int nVertices = 0;
|
|
for (int i=0; i<m; ++i)
|
|
nVertices += pointPolygonTest(_InputArray(fp1, n), fp2[i], false) >= 0;
|
|
|
|
// if all of fp2's vertices is inside/on the edge of fp1.
|
|
if (nVertices == m)
|
|
{
|
|
intersected = true;
|
|
result = fp2;
|
|
nr = m;
|
|
}
|
|
else // otherwise check if fp2 is inside fp1.
|
|
{
|
|
nVertices = 0;
|
|
for (int i=0; i<n; ++i)
|
|
nVertices += pointPolygonTest(_InputArray(fp2, m), fp1[i], false) >= 0;
|
|
|
|
// // if all of fp1's vertices is inside/on the edge of fp2.
|
|
if (nVertices == n)
|
|
{
|
|
intersected = true;
|
|
result = fp1;
|
|
nr = n;
|
|
}
|
|
}
|
|
|
|
if (!intersected)
|
|
{
|
|
_p12.release();
|
|
return 0.f;
|
|
}
|
|
|
|
area = (float)contourArea(_InputArray(result, nr), false);
|
|
}
|
|
|
|
if( _p12.needed() )
|
|
{
|
|
Mat temp(nr, 1, CV_32FC2, result);
|
|
// if both input contours were reflected,
|
|
// let's orient the result as the input vectors
|
|
if( orientation == 2 )
|
|
flip(temp, temp, 0);
|
|
|
|
temp.copyTo(_p12);
|
|
}
|
|
return (float)fabs(area);
|
|
}
|
|
|
|
static Rect maskBoundingRect( const Mat& img )
|
|
{
|
|
CV_Assert( img.depth() <= CV_8S && img.channels() == 1 );
|
|
|
|
Size size = img.size();
|
|
int xmin = size.width, ymin = -1, xmax = -1, ymax = -1, i, j, k;
|
|
|
|
for( i = 0; i < size.height; i++ )
|
|
{
|
|
const uchar* _ptr = img.ptr(i);
|
|
const uchar* ptr = (const uchar*)alignPtr(_ptr, 4);
|
|
int have_nz = 0, k_min, offset = (int)(ptr - _ptr);
|
|
j = 0;
|
|
offset = MIN(offset, size.width);
|
|
for( ; j < offset; j++ )
|
|
if( _ptr[j] )
|
|
{
|
|
if( j < xmin )
|
|
xmin = j;
|
|
if( j > xmax )
|
|
xmax = j;
|
|
have_nz = 1;
|
|
}
|
|
if( offset < size.width )
|
|
{
|
|
xmin -= offset;
|
|
xmax -= offset;
|
|
size.width -= offset;
|
|
j = 0;
|
|
for( ; j <= xmin - 4; j += 4 )
|
|
if( *((int*)(ptr+j)) )
|
|
break;
|
|
for( ; j < xmin; j++ )
|
|
if( ptr[j] )
|
|
{
|
|
xmin = j;
|
|
if( j > xmax )
|
|
xmax = j;
|
|
have_nz = 1;
|
|
break;
|
|
}
|
|
k_min = MAX(j-1, xmax);
|
|
k = size.width - 1;
|
|
for( ; k > k_min && (k&3) != 3; k-- )
|
|
if( ptr[k] )
|
|
break;
|
|
if( k > k_min && (k&3) == 3 )
|
|
{
|
|
for( ; k > k_min+3; k -= 4 )
|
|
if( *((int*)(ptr+k-3)) )
|
|
break;
|
|
}
|
|
for( ; k > k_min; k-- )
|
|
if( ptr[k] )
|
|
{
|
|
xmax = k;
|
|
have_nz = 1;
|
|
break;
|
|
}
|
|
if( !have_nz )
|
|
{
|
|
j &= ~3;
|
|
for( ; j <= k - 3; j += 4 )
|
|
if( *((int*)(ptr+j)) )
|
|
break;
|
|
for( ; j <= k; j++ )
|
|
if( ptr[j] )
|
|
{
|
|
have_nz = 1;
|
|
break;
|
|
}
|
|
}
|
|
xmin += offset;
|
|
xmax += offset;
|
|
size.width += offset;
|
|
}
|
|
if( have_nz )
|
|
{
|
|
if( ymin < 0 )
|
|
ymin = i;
|
|
ymax = i;
|
|
}
|
|
}
|
|
|
|
if( xmin >= size.width )
|
|
xmin = ymin = 0;
|
|
return Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1);
|
|
}
|
|
|
|
// Calculates bounding rectangle of a point set or retrieves already calculated
|
|
static Rect pointSetBoundingRect( const Mat& points )
|
|
{
|
|
int npoints = points.checkVector(2);
|
|
int depth = points.depth();
|
|
CV_Assert(npoints >= 0 && (depth == CV_32F || depth == CV_32S));
|
|
|
|
int xmin = 0, ymin = 0, xmax = -1, ymax = -1, i;
|
|
bool is_float = depth == CV_32F;
|
|
|
|
if( npoints == 0 )
|
|
return Rect();
|
|
|
|
#if CV_SIMD // TODO: enable for CV_SIMD_SCALABLE, loop tail related.
|
|
const int64_t* pts = points.ptr<int64_t>();
|
|
|
|
if( !is_float )
|
|
{
|
|
v_int32 minval, maxval;
|
|
minval = maxval = v_reinterpret_as_s32(vx_setall_s64(*pts)); //min[0]=pt.x, min[1]=pt.y, min[2]=pt.x, min[3]=pt.y
|
|
for( i = 1; i <= npoints - VTraits<v_int32>::vlanes()/2; i+= VTraits<v_int32>::vlanes()/2 )
|
|
{
|
|
v_int32 ptXY2 = v_reinterpret_as_s32(vx_load(pts + i));
|
|
minval = v_min(ptXY2, minval);
|
|
maxval = v_max(ptXY2, maxval);
|
|
}
|
|
minval = v_min(v_reinterpret_as_s32(v_expand_low(v_reinterpret_as_u32(minval))), v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(minval))));
|
|
maxval = v_max(v_reinterpret_as_s32(v_expand_low(v_reinterpret_as_u32(maxval))), v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(maxval))));
|
|
if( i <= npoints - VTraits<v_int32>::vlanes()/4 )
|
|
{
|
|
v_int32 ptXY = v_reinterpret_as_s32(v_expand_low(v_reinterpret_as_u32(vx_load_low(pts + i))));
|
|
minval = v_min(ptXY, minval);
|
|
maxval = v_max(ptXY, maxval);
|
|
i += VTraits<v_int64>::vlanes()/2;
|
|
}
|
|
for(int j = 16; j < VTraits<v_uint8>::vlanes(); j*=2)
|
|
{
|
|
minval = v_min(v_reinterpret_as_s32(v_expand_low(v_reinterpret_as_u32(minval))), v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(minval))));
|
|
maxval = v_max(v_reinterpret_as_s32(v_expand_low(v_reinterpret_as_u32(maxval))), v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(maxval))));
|
|
}
|
|
xmin = v_get0(minval);
|
|
xmax = v_get0(maxval);
|
|
ymin = v_get0(v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(minval))));
|
|
ymax = v_get0(v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(maxval))));
|
|
#if CV_SIMD_WIDTH > 16
|
|
if( i < npoints )
|
|
{
|
|
v_int32x4 minval2, maxval2;
|
|
minval2 = maxval2 = v_reinterpret_as_s32(v_expand_low(v_reinterpret_as_u32(v_load_low(pts + i))));
|
|
for( i++; i < npoints; i++ )
|
|
{
|
|
v_int32x4 ptXY = v_reinterpret_as_s32(v_expand_low(v_reinterpret_as_u32(v_load_low(pts + i))));
|
|
minval2 = v_min(ptXY, minval2);
|
|
maxval2 = v_max(ptXY, maxval2);
|
|
}
|
|
xmin = min(xmin, v_get0(minval2));
|
|
xmax = max(xmax, v_get0(maxval2));
|
|
ymin = min(ymin, v_get0(v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(minval2)))));
|
|
ymax = max(ymax, v_get0(v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(maxval2)))));
|
|
}
|
|
#endif // CV_SIMD
|
|
}
|
|
else
|
|
{
|
|
v_float32 minval, maxval;
|
|
minval = maxval = v_reinterpret_as_f32(vx_setall_s64(*pts)); //min[0]=pt.x, min[1]=pt.y, min[2]=pt.x, min[3]=pt.y
|
|
for( i = 1; i <= npoints - VTraits<v_float32>::vlanes()/2; i+= VTraits<v_float32>::vlanes()/2 )
|
|
{
|
|
v_float32 ptXY2 = v_reinterpret_as_f32(vx_load(pts + i));
|
|
minval = v_min(ptXY2, minval);
|
|
maxval = v_max(ptXY2, maxval);
|
|
}
|
|
minval = v_min(v_reinterpret_as_f32(v_expand_low(v_reinterpret_as_u32(minval))), v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(minval))));
|
|
maxval = v_max(v_reinterpret_as_f32(v_expand_low(v_reinterpret_as_u32(maxval))), v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(maxval))));
|
|
if( i <= npoints - VTraits<v_float32>::vlanes()/4 )
|
|
{
|
|
v_float32 ptXY = v_reinterpret_as_f32(v_expand_low(v_reinterpret_as_u32(vx_load_low(pts + i))));
|
|
minval = v_min(ptXY, minval);
|
|
maxval = v_max(ptXY, maxval);
|
|
i += VTraits<v_float32>::vlanes()/4;
|
|
}
|
|
for(int j = 16; j < VTraits<v_uint8>::vlanes(); j*=2)
|
|
{
|
|
minval = v_min(v_reinterpret_as_f32(v_expand_low(v_reinterpret_as_u32(minval))), v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(minval))));
|
|
maxval = v_max(v_reinterpret_as_f32(v_expand_low(v_reinterpret_as_u32(maxval))), v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(maxval))));
|
|
}
|
|
xmin = cvFloor(v_get0(minval));
|
|
xmax = cvFloor(v_get0(maxval));
|
|
ymin = cvFloor(v_get0(v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(minval)))));
|
|
ymax = cvFloor(v_get0(v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(maxval)))));
|
|
#if CV_SIMD_WIDTH > 16
|
|
if( i < npoints )
|
|
{
|
|
v_float32x4 minval2, maxval2;
|
|
minval2 = maxval2 = v_reinterpret_as_f32(v_expand_low(v_reinterpret_as_u32(v_load_low(pts + i))));
|
|
for( i++; i < npoints; i++ )
|
|
{
|
|
v_float32x4 ptXY = v_reinterpret_as_f32(v_expand_low(v_reinterpret_as_u32(v_load_low(pts + i))));
|
|
minval2 = v_min(ptXY, minval2);
|
|
maxval2 = v_max(ptXY, maxval2);
|
|
}
|
|
xmin = min(xmin, cvFloor(v_get0(minval2)));
|
|
xmax = max(xmax, cvFloor(v_get0(maxval2)));
|
|
ymin = min(ymin, cvFloor(v_get0(v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(minval2))))));
|
|
ymax = max(ymax, cvFloor(v_get0(v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(maxval2))))));
|
|
}
|
|
#endif
|
|
}
|
|
#else
|
|
const Point* pts = points.ptr<Point>();
|
|
Point pt = pts[0];
|
|
|
|
if( !is_float )
|
|
{
|
|
xmin = xmax = pt.x;
|
|
ymin = ymax = pt.y;
|
|
|
|
for( i = 1; i < npoints; i++ )
|
|
{
|
|
pt = pts[i];
|
|
|
|
if( xmin > pt.x )
|
|
xmin = pt.x;
|
|
|
|
if( xmax < pt.x )
|
|
xmax = pt.x;
|
|
|
|
if( ymin > pt.y )
|
|
ymin = pt.y;
|
|
|
|
if( ymax < pt.y )
|
|
ymax = pt.y;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
Cv32suf v;
|
|
// init values
|
|
xmin = xmax = CV_TOGGLE_FLT(pt.x);
|
|
ymin = ymax = CV_TOGGLE_FLT(pt.y);
|
|
|
|
for( i = 1; i < npoints; i++ )
|
|
{
|
|
pt = pts[i];
|
|
pt.x = CV_TOGGLE_FLT(pt.x);
|
|
pt.y = CV_TOGGLE_FLT(pt.y);
|
|
|
|
if( xmin > pt.x )
|
|
xmin = pt.x;
|
|
|
|
if( xmax < pt.x )
|
|
xmax = pt.x;
|
|
|
|
if( ymin > pt.y )
|
|
ymin = pt.y;
|
|
|
|
if( ymax < pt.y )
|
|
ymax = pt.y;
|
|
}
|
|
|
|
v.i = CV_TOGGLE_FLT(xmin); xmin = cvFloor(v.f);
|
|
v.i = CV_TOGGLE_FLT(ymin); ymin = cvFloor(v.f);
|
|
// because right and bottom sides of the bounding rectangle are not inclusive
|
|
// (note +1 in width and height calculation below), cvFloor is used here instead of cvCeil
|
|
v.i = CV_TOGGLE_FLT(xmax); xmax = cvFloor(v.f);
|
|
v.i = CV_TOGGLE_FLT(ymax); ymax = cvFloor(v.f);
|
|
}
|
|
#endif
|
|
|
|
return Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1);
|
|
}
|
|
|
|
|
|
cv::Rect cv::boundingRect(InputArray array)
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
Mat m = array.getMat();
|
|
return m.depth() <= CV_8U ? maskBoundingRect(m) : pointSetBoundingRect(m);
|
|
}
|
|
|
|
|
|
/* Calculates bounding rectangle of a point set or retrieves already calculated */
|
|
CV_IMPL CvRect
|
|
cvBoundingRect( CvArr* array, int update )
|
|
{
|
|
cv::Rect rect;
|
|
CvContour contour_header;
|
|
CvSeq* ptseq = 0;
|
|
CvSeqBlock block;
|
|
|
|
CvMat stub, *mat = 0;
|
|
int calculate = update;
|
|
|
|
if( CV_IS_SEQ( array ))
|
|
{
|
|
ptseq = (CvSeq*)array;
|
|
if( !CV_IS_SEQ_POINT_SET( ptseq ))
|
|
CV_Error( cv::Error::StsBadArg, "Unsupported sequence type" );
|
|
|
|
if( ptseq->header_size < (int)sizeof(CvContour))
|
|
{
|
|
update = 0;
|
|
calculate = 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mat = cvGetMat( array, &stub );
|
|
if( CV_MAT_TYPE(mat->type) == CV_32SC2 ||
|
|
CV_MAT_TYPE(mat->type) == CV_32FC2 )
|
|
{
|
|
ptseq = cvPointSeqFromMat(CV_SEQ_KIND_GENERIC, mat, &contour_header, &block);
|
|
mat = 0;
|
|
}
|
|
else if( CV_MAT_TYPE(mat->type) != CV_8UC1 &&
|
|
CV_MAT_TYPE(mat->type) != CV_8SC1 )
|
|
CV_Error( cv::Error::StsUnsupportedFormat,
|
|
"The image/matrix format is not supported by the function" );
|
|
update = 0;
|
|
calculate = 1;
|
|
}
|
|
|
|
if( !calculate )
|
|
return ((CvContour*)ptseq)->rect;
|
|
|
|
if( mat )
|
|
{
|
|
rect = cvRect(maskBoundingRect(cv::cvarrToMat(mat)));
|
|
}
|
|
else if( ptseq->total )
|
|
{
|
|
cv::AutoBuffer<double> abuf;
|
|
rect = cvRect(pointSetBoundingRect(cv::cvarrToMat(ptseq, false, false, 0, &abuf)));
|
|
}
|
|
if( update )
|
|
((CvContour*)ptseq)->rect = cvRect(rect);
|
|
return cvRect(rect);
|
|
}
|