mirror of
https://github.com/opencv/opencv.git
synced 2025-01-01 05:58:13 +08:00
506 lines
18 KiB
C++
506 lines
18 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
|
|
/****************************************************************************************\
|
|
* DescriptorExtractor *
|
|
\****************************************************************************************/
|
|
/*
|
|
* DescriptorExtractor
|
|
*/
|
|
struct RoiPredicate
|
|
{
|
|
RoiPredicate(float _minX, float _minY, float _maxX, float _maxY)
|
|
: minX(_minX), minY(_minY), maxX(_maxX), maxY(_maxY)
|
|
{}
|
|
|
|
bool operator()( const KeyPoint& keyPt) const
|
|
{
|
|
Point2f pt = keyPt.pt;
|
|
return (pt.x < minX) || (pt.x >= maxX) || (pt.y < minY) || (pt.y >= maxY);
|
|
}
|
|
|
|
float minX, minY, maxX, maxY;
|
|
};
|
|
|
|
void DescriptorExtractor::removeBorderKeypoints( vector<KeyPoint>& keypoints,
|
|
Size imageSize, int borderPixels )
|
|
{
|
|
keypoints.erase( remove_if(keypoints.begin(), keypoints.end(),
|
|
RoiPredicate((float)borderPixels, (float)borderPixels,
|
|
(float)(imageSize.width - borderPixels),
|
|
(float)(imageSize.height - borderPixels))),
|
|
keypoints.end());
|
|
}
|
|
|
|
/****************************************************************************************\
|
|
* SiftDescriptorExtractor *
|
|
\****************************************************************************************/
|
|
SiftDescriptorExtractor::SiftDescriptorExtractor( double magnification, bool isNormalize,
|
|
int nOctaves, int nOctaveLayers, int firstOctave )
|
|
: sift( magnification, isNormalize, nOctaves, nOctaveLayers, firstOctave )
|
|
{}
|
|
|
|
void SiftDescriptorExtractor::compute( const Mat& image,
|
|
vector<KeyPoint>& keypoints,
|
|
Mat& descriptors) const
|
|
{
|
|
bool useProvidedKeypoints = true;
|
|
sift(image, Mat(), keypoints, descriptors, useProvidedKeypoints);
|
|
}
|
|
|
|
/****************************************************************************************\
|
|
* SurfDescriptorExtractor *
|
|
\****************************************************************************************/
|
|
SurfDescriptorExtractor::SurfDescriptorExtractor( int nOctaves,
|
|
int nOctaveLayers, bool extended )
|
|
: surf( 0.0, nOctaves, nOctaveLayers, extended )
|
|
{}
|
|
|
|
void SurfDescriptorExtractor::compute( const Mat& image,
|
|
vector<KeyPoint>& keypoints,
|
|
Mat& descriptors) const
|
|
{
|
|
// Compute descriptors for given keypoints
|
|
vector<float> _descriptors;
|
|
Mat mask;
|
|
bool useProvidedKeypoints = true;
|
|
surf(image, mask, keypoints, _descriptors, useProvidedKeypoints);
|
|
|
|
descriptors.create(keypoints.size(), surf.descriptorSize(), CV_32FC1);
|
|
assert( (int)_descriptors.size() == descriptors.rows * descriptors.cols );
|
|
std::copy(_descriptors.begin(), _descriptors.end(), descriptors.begin<float>());
|
|
}
|
|
|
|
/****************************************************************************************\
|
|
* GenericDescriptorMatch *
|
|
\****************************************************************************************/
|
|
/*
|
|
* KeyPointCollection
|
|
*/
|
|
void KeyPointCollection::add( const Mat& _image, const vector<KeyPoint>& _points )
|
|
{
|
|
// update m_start_indices
|
|
if( startIndices.empty() )
|
|
startIndices.push_back(0);
|
|
else
|
|
startIndices.push_back(*startIndices.rbegin() + points.rbegin()->size());
|
|
|
|
// add image and keypoints
|
|
images.push_back(_image);
|
|
points.push_back(_points);
|
|
}
|
|
|
|
KeyPoint KeyPointCollection::getKeyPoint( int index ) const
|
|
{
|
|
size_t i = 0;
|
|
for(; i < startIndices.size() && startIndices[i] <= index; i++);
|
|
i--;
|
|
assert(i < startIndices.size() && (size_t)index - startIndices[i] < points[i].size());
|
|
|
|
return points[i][index - startIndices[i]];
|
|
}
|
|
|
|
size_t KeyPointCollection::calcKeypointCount() const
|
|
{
|
|
if( startIndices.empty() )
|
|
return 0;
|
|
return *startIndices.rbegin() + points.rbegin()->size();
|
|
}
|
|
|
|
/*
|
|
* GenericDescriptorMatch
|
|
*/
|
|
void GenericDescriptorMatch::add( KeyPointCollection& collection )
|
|
{
|
|
for( size_t i = 0; i < collection.images.size(); i++ )
|
|
add( collection.images[i], collection.points[i] );
|
|
}
|
|
|
|
void GenericDescriptorMatch::classify( const Mat& image, vector<cv::KeyPoint>& points )
|
|
{
|
|
vector<int> keypointIndices;
|
|
match( image, points, keypointIndices );
|
|
|
|
// remap keypoint indices to descriptors
|
|
for( size_t i = 0; i < keypointIndices.size(); i++ )
|
|
points[i].class_id = collection.getKeyPoint(keypointIndices[i]).class_id;
|
|
};
|
|
|
|
/****************************************************************************************\
|
|
* OneWayDescriptorMatch *
|
|
\****************************************************************************************/
|
|
OneWayDescriptorMatch::OneWayDescriptorMatch()
|
|
{}
|
|
|
|
OneWayDescriptorMatch::OneWayDescriptorMatch( const Params& _params)
|
|
{
|
|
initialize(_params);
|
|
}
|
|
|
|
OneWayDescriptorMatch::~OneWayDescriptorMatch()
|
|
{}
|
|
|
|
void OneWayDescriptorMatch::initialize( const Params& _params)
|
|
{
|
|
base.release();
|
|
params = _params;
|
|
}
|
|
|
|
void OneWayDescriptorMatch::add( const Mat& image, vector<KeyPoint>& keypoints )
|
|
{
|
|
if( base.empty() )
|
|
base = new OneWayDescriptorObject( params.patchSize, params.poseCount, params.trainPath.c_str(),
|
|
params.pcaConfig.c_str(), params.pcaHrConfig.c_str(),
|
|
params.pcaDescConfig.c_str());
|
|
|
|
size_t trainFeatureCount = keypoints.size();
|
|
|
|
base->Allocate( trainFeatureCount );
|
|
|
|
IplImage _image = image;
|
|
for( size_t i = 0; i < keypoints.size(); i++ )
|
|
base->InitializeDescriptor( i, &_image, keypoints[i], "" );
|
|
|
|
collection.add( Mat(), keypoints );
|
|
|
|
#if defined(_KDTREE)
|
|
base->ConvertDescriptorsArrayToTree();
|
|
#endif
|
|
}
|
|
|
|
void OneWayDescriptorMatch::add( KeyPointCollection& keypoints )
|
|
{
|
|
if( base.empty() )
|
|
base = new OneWayDescriptorObject( params.patchSize, params.poseCount, params.trainPath.c_str(),
|
|
params.pcaConfig.c_str(), params.pcaHrConfig.c_str(),
|
|
params.pcaDescConfig.c_str());
|
|
|
|
size_t trainFeatureCount = keypoints.calcKeypointCount();
|
|
|
|
base->Allocate( trainFeatureCount );
|
|
|
|
int count = 0;
|
|
for( size_t i = 0; i < keypoints.points.size(); i++ )
|
|
{
|
|
for( size_t j = 0; j < keypoints.points[i].size(); j++ )
|
|
{
|
|
IplImage img = keypoints.images[i];
|
|
base->InitializeDescriptor( count++, &img, keypoints.points[i][j], "" );
|
|
}
|
|
|
|
collection.add( Mat(), keypoints.points[i] );
|
|
}
|
|
|
|
#if defined(_KDTREE)
|
|
base->ConvertDescriptorsArrayToTree();
|
|
#endif
|
|
}
|
|
|
|
void OneWayDescriptorMatch::match( const Mat& image, vector<KeyPoint>& points, vector<int>& indices)
|
|
{
|
|
indices.resize(points.size());
|
|
IplImage _image = image;
|
|
for( size_t i = 0; i < points.size(); i++ )
|
|
{
|
|
int descIdx = -1;
|
|
int poseIdx = -1;
|
|
float distance;
|
|
base->FindDescriptor( &_image, points[i].pt, descIdx, poseIdx, distance );
|
|
indices[i] = descIdx;
|
|
}
|
|
}
|
|
|
|
void OneWayDescriptorMatch::classify( const Mat& image, vector<KeyPoint>& points )
|
|
{
|
|
IplImage _image = image;
|
|
for( size_t i = 0; i < points.size(); i++ )
|
|
{
|
|
int descIdx = -1;
|
|
int poseIdx = -1;
|
|
float distance;
|
|
base->FindDescriptor(&_image, points[i].pt, descIdx, poseIdx, distance);
|
|
points[i].class_id = collection.getKeyPoint(descIdx).class_id;
|
|
}
|
|
}
|
|
|
|
/****************************************************************************************\
|
|
* CalonderDescriptorMatch *
|
|
\****************************************************************************************/
|
|
CalonderDescriptorMatch::Params::Params( const RNG& _rng, const PatchGenerator& _patchGen,
|
|
int _numTrees, int _depth, int _views,
|
|
size_t _reducedNumDim,
|
|
int _numQuantBits,
|
|
bool _printStatus,
|
|
int _patchSize ) :
|
|
rng(_rng), patchGen(_patchGen), numTrees(_numTrees), depth(_depth), views(_views),
|
|
patchSize(_patchSize), reducedNumDim(_reducedNumDim), numQuantBits(_numQuantBits), printStatus(_printStatus)
|
|
{}
|
|
|
|
CalonderDescriptorMatch::Params::Params( const string& _filename )
|
|
{
|
|
filename = _filename;
|
|
}
|
|
|
|
CalonderDescriptorMatch::CalonderDescriptorMatch()
|
|
{}
|
|
|
|
CalonderDescriptorMatch::CalonderDescriptorMatch( const Params& _params )
|
|
{
|
|
initialize(_params);
|
|
}
|
|
|
|
CalonderDescriptorMatch::~CalonderDescriptorMatch()
|
|
{}
|
|
|
|
void CalonderDescriptorMatch::initialize( const Params& _params )
|
|
{
|
|
classifier.release();
|
|
params = _params;
|
|
if( !params.filename.empty() )
|
|
{
|
|
classifier = new RTreeClassifier;
|
|
classifier->read( params.filename.c_str() );
|
|
}
|
|
}
|
|
|
|
void CalonderDescriptorMatch::add( const Mat& image, vector<KeyPoint>& keypoints )
|
|
{
|
|
if( params.filename.empty() )
|
|
collection.add( image, keypoints );
|
|
}
|
|
|
|
Mat CalonderDescriptorMatch::extractPatch( const Mat& image, const Point& pt, int patchSize ) const
|
|
{
|
|
const int offset = patchSize / 2;
|
|
return image( Rect(pt.x - offset, pt.y - offset, patchSize, patchSize) );
|
|
}
|
|
|
|
void CalonderDescriptorMatch::calcBestProbAndMatchIdx( const Mat& image, const Point& pt,
|
|
float& bestProb, int& bestMatchIdx, float* signature )
|
|
{
|
|
IplImage roi = extractPatch( image, pt, params.patchSize );
|
|
classifier->getSignature( &roi, signature );
|
|
|
|
bestProb = 0;
|
|
bestMatchIdx = -1;
|
|
for( size_t ci = 0; ci < (size_t)classifier->classes(); ci++ )
|
|
{
|
|
if( signature[ci] > bestProb )
|
|
{
|
|
bestProb = signature[ci];
|
|
bestMatchIdx = ci;
|
|
}
|
|
}
|
|
}
|
|
|
|
void CalonderDescriptorMatch::trainRTreeClassifier()
|
|
{
|
|
if( classifier.empty() )
|
|
{
|
|
assert( params.filename.empty() );
|
|
classifier = new RTreeClassifier;
|
|
|
|
vector<BaseKeypoint> baseKeyPoints;
|
|
vector<IplImage> iplImages( collection.images.size() );
|
|
for( size_t imageIdx = 0; imageIdx < collection.images.size(); imageIdx++ )
|
|
{
|
|
iplImages[imageIdx] = collection.images[imageIdx];
|
|
for( size_t pointIdx = 0; pointIdx < collection.points[imageIdx].size(); pointIdx++ )
|
|
{
|
|
BaseKeypoint bkp;
|
|
KeyPoint kp = collection.points[imageIdx][pointIdx];
|
|
bkp.x = cvRound(kp.pt.x);
|
|
bkp.y = cvRound(kp.pt.y);
|
|
bkp.image = &iplImages[imageIdx];
|
|
baseKeyPoints.push_back(bkp);
|
|
}
|
|
}
|
|
classifier->train( baseKeyPoints, params.rng, params.patchGen, params.numTrees,
|
|
params.depth, params.views, params.reducedNumDim, params.numQuantBits,
|
|
params.printStatus );
|
|
}
|
|
}
|
|
|
|
void CalonderDescriptorMatch::match( const Mat& image, vector<KeyPoint>& keypoints, vector<int>& indices )
|
|
{
|
|
trainRTreeClassifier();
|
|
|
|
float bestProb = 0;
|
|
AutoBuffer<float> signature( classifier->classes() );
|
|
indices.resize( keypoints.size() );
|
|
|
|
for( size_t pi = 0; pi < keypoints.size(); pi++ )
|
|
calcBestProbAndMatchIdx( image, keypoints[pi].pt, bestProb, indices[pi], signature );
|
|
}
|
|
|
|
void CalonderDescriptorMatch::classify( const Mat& image, vector<KeyPoint>& keypoints )
|
|
{
|
|
trainRTreeClassifier();
|
|
|
|
AutoBuffer<float> signature( classifier->classes() );
|
|
for( size_t pi = 0; pi < keypoints.size(); pi++ )
|
|
{
|
|
float bestProb = 0;
|
|
int bestMatchIdx = -1;
|
|
calcBestProbAndMatchIdx( image, keypoints[pi].pt, bestProb, bestMatchIdx, signature );
|
|
keypoints[pi].class_id = collection.getKeyPoint(bestMatchIdx).class_id;
|
|
}
|
|
}
|
|
|
|
/****************************************************************************************\
|
|
* FernDescriptorMatch *
|
|
\****************************************************************************************/
|
|
FernDescriptorMatch::Params::Params( int _nclasses, int _patchSize, int _signatureSize,
|
|
int _nstructs, int _structSize, int _nviews, int _compressionMethod,
|
|
const PatchGenerator& _patchGenerator ) :
|
|
nclasses(_nclasses), patchSize(_patchSize), signatureSize(_signatureSize),
|
|
nstructs(_nstructs), structSize(_structSize), nviews(_nviews),
|
|
compressionMethod(_compressionMethod), patchGenerator(_patchGenerator)
|
|
{}
|
|
|
|
FernDescriptorMatch::Params::Params( const string& _filename )
|
|
{
|
|
filename = _filename;
|
|
}
|
|
|
|
FernDescriptorMatch::FernDescriptorMatch()
|
|
{}
|
|
|
|
FernDescriptorMatch::FernDescriptorMatch( const Params& _params )
|
|
{
|
|
params = _params;
|
|
}
|
|
|
|
FernDescriptorMatch::~FernDescriptorMatch()
|
|
{}
|
|
|
|
void FernDescriptorMatch::initialize( const Params& _params )
|
|
{
|
|
classifier.release();
|
|
params = _params;
|
|
if( !params.filename.empty() )
|
|
{
|
|
classifier = new FernClassifier;
|
|
FileStorage fs(params.filename, FileStorage::READ);
|
|
if( fs.isOpened() )
|
|
classifier->read( fs.getFirstTopLevelNode() );
|
|
}
|
|
}
|
|
|
|
void FernDescriptorMatch::add( const Mat& image, vector<KeyPoint>& keypoints )
|
|
{
|
|
if( params.filename.empty() )
|
|
collection.add( image, keypoints );
|
|
}
|
|
|
|
void FernDescriptorMatch::trainFernClassifier()
|
|
{
|
|
if( classifier.empty() )
|
|
{
|
|
assert( params.filename.empty() );
|
|
|
|
vector<Point2f> points;
|
|
vector<Ptr<Mat> > refimgs( collection.images.size() );
|
|
vector<int> labels;
|
|
for( size_t imageIdx = 0; imageIdx < collection.images.size(); imageIdx++ )
|
|
{
|
|
refimgs[imageIdx] = &collection.images[imageIdx];
|
|
for( size_t pointIdx = 0; pointIdx < collection.points[imageIdx].size(); pointIdx++ )
|
|
{
|
|
points.push_back(collection.points[imageIdx][pointIdx].pt);
|
|
labels.push_back(imageIdx);
|
|
}
|
|
}
|
|
|
|
classifier = new FernClassifier( points, refimgs, labels, params.nclasses, params.patchSize,
|
|
params.signatureSize, params.nstructs, params.structSize, params.nviews,
|
|
params.compressionMethod, params.patchGenerator );
|
|
}
|
|
}
|
|
|
|
void FernDescriptorMatch::calcBestProbAndMatchIdx( const Mat& image, const Point2f& pt,
|
|
float& bestProb, int& bestMatchIdx, vector<float>& signature )
|
|
{
|
|
(*classifier)( image, pt, signature);
|
|
|
|
bestProb = 0;
|
|
bestMatchIdx = -1;
|
|
for( size_t ci = 0; ci < (size_t)classifier->getClassCount(); ci++ )
|
|
{
|
|
if( signature[ci] > bestProb )
|
|
{
|
|
bestProb = signature[ci];
|
|
bestMatchIdx = ci;
|
|
}
|
|
}
|
|
}
|
|
|
|
void FernDescriptorMatch::match( const Mat& image, vector<KeyPoint>& keypoints, vector<int>& indices )
|
|
{
|
|
trainFernClassifier();
|
|
|
|
float bestProb = 0;
|
|
indices.resize( keypoints.size() );
|
|
vector<float> signature( (size_t)classifier->getClassCount() );
|
|
|
|
for( size_t pi = 0; pi < keypoints.size(); pi++ )
|
|
calcBestProbAndMatchIdx( image, keypoints[pi].pt, bestProb, indices[pi], signature );
|
|
}
|
|
|
|
void FernDescriptorMatch::classify( const Mat& image, vector<KeyPoint>& keypoints )
|
|
{
|
|
trainFernClassifier();
|
|
|
|
vector<float> signature( (size_t)classifier->getClassCount() );
|
|
for( size_t pi = 0; pi < keypoints.size(); pi++ )
|
|
{
|
|
float bestProb = 0;
|
|
int bestMatchIdx = -1;
|
|
calcBestProbAndMatchIdx( image, keypoints[pi].pt, bestProb, bestMatchIdx, signature );
|
|
keypoints[pi].class_id = collection.getKeyPoint(bestMatchIdx).class_id;
|
|
}
|
|
}
|