opencv/tests/cv/src/akmeans.cpp

292 lines
8.1 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "cvtest.h"
#if 0
/* Testing parameters */
static char test_desc[] = "KMeans clustering";
static char* func_name[] =
{
"cvKMeans"
};
//based on Ara Nefian's implementation
float distance(float* vector_1, float *vector_2, int VecSize)
{
int i;
float dist;
dist = 0.0;
for (i = 0; i < VecSize; i++)
{
//printf ("%f, %f\n", vector_1[i], vector_2[i]);
dist = dist + (vector_1[i] - vector_2[i])*(vector_1[i] - vector_2[i]);
}
return dist;
}
//returns number of made iterations
int _real_kmeans( int numClusters, float **sample, int numSamples,
int VecSize, int* a_class, double eps, int iter )
{
int i, k, n;
int *counter;
float minDist;
float *dist;
float **curr_cluster;
float **prev_cluster;
float error;
//printf("* numSamples = %d, numClusters = %d, VecSize = %d\n", numSamples, numClusters, VecSize);
//memory allocation
dist = new float[numClusters];
counter = new int[numClusters];
//allocate memory for curr_cluster and prev_cluster
curr_cluster = new float*[numClusters];
prev_cluster = new float*[numClusters];
for (k = 0; k < numClusters; k++){
curr_cluster[k] = new float[VecSize];
prev_cluster[k] = new float[VecSize];
}
//pick initial cluster centers
for (k = 0; k < numClusters; k++)
{
for (n = 0; n < VecSize; n++)
{
curr_cluster[k][n] = sample[k*(numSamples/numClusters)][n];
prev_cluster[k][n] = sample[k*(numSamples/numClusters)][n];
}
}
int NumIter = 0;
error = FLT_MAX;
while ((error > eps) && (NumIter < iter))
{
NumIter++;
//printf("NumIter = %d, error = %lf, \n", NumIter, error);
//assign samples to clusters
for (i = 0; i < numSamples; i++)
{
for (k = 0; k < numClusters; k++)
{
dist[k] = distance(sample[i], curr_cluster[k], VecSize);
}
minDist = dist[0];
a_class[i] = 0;
for (k = 1; k < numClusters; k++)
{
if (dist[k] < minDist)
{
minDist = dist[k];
a_class[i] = k;
}
}
}
//reset clusters and counters
for (k = 0; k < numClusters; k++){
counter[k] = 0;
for (n = 0; n < VecSize; n++){
curr_cluster[k][n] = 0.0;
}
}
for (i = 0; i < numSamples; i++){
for (n = 0; n < VecSize; n++){
curr_cluster[a_class[i]][n] = curr_cluster[a_class[i]][n] + sample[i][n];
}
counter[a_class[i]]++;
}
for (k = 0; k < numClusters; k++){
for (n = 0; n < VecSize; n++){
curr_cluster[k][n] = curr_cluster[k][n]/(float)counter[k];
}
}
error = 0.0;
for (k = 0; k < numClusters; k++){
for (n = 0; n < VecSize; n++){
error = error + (curr_cluster[k][n] - prev_cluster[k][n])*(curr_cluster[k][n] - prev_cluster[k][n]);
}
}
//error = error/(double)(numClusters*VecSize);
//copy curr_clusters to prev_clusters
for (k = 0; k < numClusters; k++){
for (n =0; n < VecSize; n++){
prev_cluster[k][n] = curr_cluster[k][n];
}
}
}
//deallocate memory for curr_cluster and prev_cluster
for (k = 0; k < numClusters; k++){
delete curr_cluster[k];
delete prev_cluster[k];
}
delete curr_cluster;
delete prev_cluster;
delete counter;
delete dist;
return NumIter;
}
static int fmaKMeans(void)
{
CvTermCriteria crit;
float** vectors;
int* output;
int* etalon_output;
int lErrors = 0;
int lNumVect = 0;
int lVectSize = 0;
int lNumClust = 0;
int lMaxNumIter = 0;
float flEpsilon = 0;
int i,j;
static int read_param = 0;
/* Initialization global parameters */
if( !read_param )
{
read_param = 1;
/* Read test-parameters */
trsiRead( &lNumVect, "1000", "Number of vectors" );
trsiRead( &lVectSize, "10", "Number of vectors" );
trsiRead( &lNumClust, "20", "Number of clusters" );
trsiRead( &lMaxNumIter,"100","Maximal number of iterations");
trssRead( &flEpsilon, "0.5", "Accuracy" );
}
crit = cvTermCriteria( CV_TERMCRIT_EPS|CV_TERMCRIT_ITER, lMaxNumIter, flEpsilon );
//allocate vectors
vectors = (float**)cvAlloc( lNumVect * sizeof(float*) );
for( i = 0; i < lNumVect; i++ )
{
vectors[i] = (float*)cvAlloc( lVectSize * sizeof( float ) );
}
output = (int*)cvAlloc( lNumVect * sizeof(int) );
etalon_output = (int*)cvAlloc( lNumVect * sizeof(int) );
//fill input vectors
for( i = 0; i < lNumVect; i++ )
{
ats1flInitRandom( -2000, 2000, vectors[i], lVectSize );
}
/* run etalon kmeans */
/* actually it is the simpliest realization of kmeans */
int ni = _real_kmeans( lNumClust, vectors, lNumVect, lVectSize, etalon_output, crit.epsilon, crit.max_iter );
trsWrite( ATS_CON, "%d iterations done\n", ni );
/* Run OpenCV function */
#define _KMEANS_TIME 0
#if _KMEANS_TIME
//timing section
trsTimerStart(0);
__int64 tics = atsGetTickCount();
#endif
cvKMeans( lNumClust, vectors, lNumVect, lVectSize,
crit, output );
#if _KMEANS_TIME
tics = atsGetTickCount() - tics;
trsTimerStop(0);
//output result
//double dbUsecs =ATS_TICS_TO_USECS((double)tics);
trsWrite( ATS_CON, "Tics per iteration %d\n", tics/ni );
#endif
//compare results
for( j = 0; j < lNumVect; j++ )
{
if ( output[j] != etalon_output[j] )
{
lErrors++;
}
}
//free memory
for( i = 0; i < lNumVect; i++ )
{
cvFree( &(vectors[i]) );
}
cvFree(&vectors);
cvFree(&output);
cvFree(&etalon_output);
if( lErrors == 0 ) return trsResult( TRS_OK, "No errors fixed for this text" );
else return trsResult( TRS_FAIL, "Detected %d errors", lErrors );
}
void InitAKMeans()
{
/* Register test function */
trsReg( func_name[0], test_desc, atsAlgoClass, fmaKMeans );
} /* InitAKMeans */
#endif