mirror of
https://github.com/opencv/opencv.git
synced 2024-11-25 19:50:38 +08:00
158 lines
5.1 KiB
C++
158 lines
5.1 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
//
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
#include "perf_precomp.hpp"
|
|
#include "opencv2/core/ocl.hpp"
|
|
|
|
#include "opencv2/dnn/shape_utils.hpp"
|
|
|
|
namespace
|
|
{
|
|
|
|
#ifdef HAVE_HALIDE
|
|
#define TEST_DNN_BACKEND DNN_BACKEND_DEFAULT, DNN_BACKEND_HALIDE
|
|
#else
|
|
#define TEST_DNN_BACKEND DNN_BACKEND_DEFAULT
|
|
#endif
|
|
#define TEST_DNN_TARGET DNN_TARGET_CPU, DNN_TARGET_OPENCL
|
|
|
|
CV_ENUM(DNNBackend, DNN_BACKEND_DEFAULT, DNN_BACKEND_HALIDE)
|
|
CV_ENUM(DNNTarget, DNN_TARGET_CPU, DNN_TARGET_OPENCL)
|
|
|
|
class DNNTestNetwork : public ::perf::TestBaseWithParam< tuple<DNNBackend, DNNTarget> >
|
|
{
|
|
public:
|
|
dnn::Backend backend;
|
|
dnn::Target target;
|
|
|
|
dnn::Net net;
|
|
|
|
void processNet(std::string weights, std::string proto, std::string halide_scheduler,
|
|
const Mat& input, const std::string& outputLayer,
|
|
const std::string& framework)
|
|
{
|
|
backend = (dnn::Backend)(int)get<0>(GetParam());
|
|
target = (dnn::Target)(int)get<1>(GetParam());
|
|
|
|
if (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL)
|
|
{
|
|
#if defined(HAVE_OPENCL)
|
|
if (!cv::ocl::useOpenCL())
|
|
#endif
|
|
{
|
|
throw ::SkipTestException("OpenCL is not available/disabled in OpenCV");
|
|
}
|
|
}
|
|
|
|
randu(input, 0.0f, 1.0f);
|
|
|
|
weights = findDataFile(weights, false);
|
|
if (!proto.empty())
|
|
proto = findDataFile(proto, false);
|
|
if (backend == DNN_BACKEND_HALIDE)
|
|
{
|
|
if (halide_scheduler == "disabled")
|
|
throw ::SkipTestException("Halide test is disabled");
|
|
if (!halide_scheduler.empty())
|
|
halide_scheduler = findDataFile(std::string("dnn/halide_scheduler_") + (target == DNN_TARGET_OPENCL ? "opencl_" : "") + halide_scheduler, true);
|
|
}
|
|
if (framework == "caffe")
|
|
{
|
|
net = cv::dnn::readNetFromCaffe(proto, weights);
|
|
}
|
|
else if (framework == "torch")
|
|
{
|
|
net = cv::dnn::readNetFromTorch(weights);
|
|
}
|
|
else if (framework == "tensorflow")
|
|
{
|
|
net = cv::dnn::readNetFromTensorflow(weights);
|
|
}
|
|
else
|
|
CV_Error(Error::StsNotImplemented, "Unknown framework " + framework);
|
|
|
|
net.setInput(blobFromImage(input, 1.0, Size(), Scalar(), false));
|
|
net.setPreferableBackend(backend);
|
|
net.setPreferableTarget(target);
|
|
if (backend == DNN_BACKEND_HALIDE)
|
|
{
|
|
net.setHalideScheduler(halide_scheduler);
|
|
}
|
|
|
|
MatShape netInputShape = shape(1, 3, input.rows, input.cols);
|
|
size_t weightsMemory = 0, blobsMemory = 0;
|
|
net.getMemoryConsumption(netInputShape, weightsMemory, blobsMemory);
|
|
int64 flops = net.getFLOPS(netInputShape);
|
|
|
|
net.forward(outputLayer); // warmup
|
|
|
|
std::cout << "Memory consumption:" << std::endl;
|
|
std::cout << " Weights(parameters): " << divUp(weightsMemory, 1u<<20) << " Mb" << std::endl;
|
|
std::cout << " Blobs: " << divUp(blobsMemory, 1u<<20) << " Mb" << std::endl;
|
|
std::cout << "Calculation complexity: " << flops * 1e-9 << " GFlops" << std::endl;
|
|
|
|
PERF_SAMPLE_BEGIN()
|
|
net.forward();
|
|
PERF_SAMPLE_END()
|
|
|
|
SANITY_CHECK_NOTHING();
|
|
}
|
|
};
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, AlexNet)
|
|
{
|
|
processNet("dnn/bvlc_alexnet.caffemodel", "dnn/bvlc_alexnet.prototxt",
|
|
"alexnet.yml", Mat(cv::Size(227, 227), CV_32FC3), "prob", "caffe");
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, GoogLeNet)
|
|
{
|
|
processNet("dnn/bvlc_googlenet.caffemodel", "dnn/bvlc_googlenet.prototxt",
|
|
"", Mat(cv::Size(224, 224), CV_32FC3), "prob", "caffe");
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, ResNet50)
|
|
{
|
|
processNet("dnn/ResNet-50-model.caffemodel", "dnn/ResNet-50-deploy.prototxt",
|
|
"resnet_50.yml", Mat(cv::Size(224, 224), CV_32FC3), "prob", "caffe");
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, SqueezeNet_v1_1)
|
|
{
|
|
processNet("dnn/squeezenet_v1.1.caffemodel", "dnn/squeezenet_v1.1.prototxt",
|
|
"squeezenet_v1_1.yml", Mat(cv::Size(227, 227), CV_32FC3), "prob", "caffe");
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, Inception_5h)
|
|
{
|
|
processNet("dnn/tensorflow_inception_graph.pb", "",
|
|
"inception_5h.yml",
|
|
Mat(cv::Size(224, 224), CV_32FC3), "softmax2", "tensorflow");
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, ENet)
|
|
{
|
|
processNet("dnn/Enet-model-best.net", "", "enet.yml",
|
|
Mat(cv::Size(512, 256), CV_32FC3), "l367_Deconvolution", "torch");
|
|
}
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, SSD)
|
|
{
|
|
processNet("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel", "dnn/ssd_vgg16.prototxt", "disabled",
|
|
Mat(cv::Size(300, 300), CV_32FC3), "detection_out", "caffe");
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, DNNTestNetwork,
|
|
testing::Combine(
|
|
::testing::Values(TEST_DNN_BACKEND),
|
|
DNNTarget::all()
|
|
)
|
|
);
|
|
|
|
} // namespace
|