mirror of
https://github.com/opencv/opencv.git
synced 2024-12-28 03:48:17 +08:00
317 lines
17 KiB
C++
317 lines
17 KiB
C++
|
|
/*#******************************************************************************
|
|
** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
**
|
|
** By downloading, copying, installing or using the software you agree to this license.
|
|
** If you do not agree to this license, do not download, install,
|
|
** copy or use the software.
|
|
**
|
|
**
|
|
** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab.
|
|
**
|
|
** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications)
|
|
**
|
|
** Creation - enhancement process 2007-2013
|
|
** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
|
|
**
|
|
** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
|
|
** Refer to the following research paper for more information:
|
|
** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
|
|
** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book:
|
|
** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
|
|
**
|
|
**
|
|
** This class is based on image processing tools of the author and already used within the Retina class (this is the same code as method retina::applyFastToneMapping, but in an independent class, it is ligth from a memory requirement point of view). It implements an adaptation of the efficient tone mapping algorithm propose by David Alleyson, Sabine Susstruck and Laurence Meylan's work, please cite:
|
|
** -> Meylan L., Alleysson D., and Susstrunk S., A Model of Retinal Local Adaptation for the Tone Mapping of Color Filter Array Images, Journal of Optical Society of America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816
|
|
**
|
|
**
|
|
** License Agreement
|
|
** For Open Source Computer Vision Library
|
|
**
|
|
** Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
|
|
**
|
|
** For Human Visual System tools (bioinspired)
|
|
** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
|
|
**
|
|
** Third party copyrights are property of their respective owners.
|
|
**
|
|
** Redistribution and use in source and binary forms, with or without modification,
|
|
** are permitted provided that the following conditions are met:
|
|
**
|
|
** * Redistributions of source code must retain the above copyright notice,
|
|
** this list of conditions and the following disclaimer.
|
|
**
|
|
** * Redistributions in binary form must reproduce the above copyright notice,
|
|
** this list of conditions and the following disclaimer in the documentation
|
|
** and/or other materials provided with the distribution.
|
|
**
|
|
** * The name of the copyright holders may not be used to endorse or promote products
|
|
** derived from this software without specific prior written permission.
|
|
**
|
|
** This software is provided by the copyright holders and contributors "as is" and
|
|
** any express or implied warranties, including, but not limited to, the implied
|
|
** warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
** In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
** indirect, incidental, special, exemplary, or consequential damages
|
|
** (including, but not limited to, procurement of substitute goods or services;
|
|
** loss of use, data, or profits; or business interruption) however caused
|
|
** and on any theory of liability, whether in contract, strict liability,
|
|
** or tort (including negligence or otherwise) arising in any way out of
|
|
** the use of this software, even if advised of the possibility of such damage.
|
|
*******************************************************************************/
|
|
|
|
/*
|
|
* retinafasttonemapping.cpp
|
|
*
|
|
* Created on: May 26, 2013
|
|
* Author: Alexandre Benoit
|
|
*/
|
|
|
|
#include "precomp.hpp"
|
|
#include "basicretinafilter.hpp"
|
|
#include "retinacolor.hpp"
|
|
#include <cstdio>
|
|
#include <sstream>
|
|
#include <valarray>
|
|
|
|
namespace cv
|
|
{
|
|
namespace bioinspired
|
|
{
|
|
/**
|
|
* @class RetinaFastToneMappingImpl a wrapper class which allows the tone mapping algorithm of Meylan&al(2007) to be used with OpenCV.
|
|
* This algorithm is already implemented in thre Retina class (retina::applyFastToneMapping) but used it does not require all the retina model to be allocated. This allows a light memory use for low memory devices (smartphones, etc.
|
|
* As a summary, these are the model properties:
|
|
* => 2 stages of local luminance adaptation with a different local neighborhood for each.
|
|
* => first stage models the retina photorecetors local luminance adaptation
|
|
* => second stage models th ganglion cells local information adaptation
|
|
* => compared to the initial publication, this class uses spatio-temporal low pass filters instead of spatial only filters.
|
|
* ====> this can help noise robustness and temporal stability for video sequence use cases.
|
|
* for more information, read to the following papers :
|
|
* Meylan L., Alleysson D., and Susstrunk S., A Model of Retinal Local Adaptation for the Tone Mapping of Color Filter Array Images, Journal of Optical Society of America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
|
|
* regarding spatio-temporal filter and the bigger retina model :
|
|
* Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
|
|
*/
|
|
|
|
class RetinaFastToneMappingImpl : public RetinaFastToneMapping
|
|
{
|
|
public:
|
|
/**
|
|
* constructor
|
|
* @param imageInput: the size of the images to process
|
|
*/
|
|
RetinaFastToneMappingImpl(Size imageInput)
|
|
{
|
|
unsigned int nbPixels=imageInput.height*imageInput.width;
|
|
|
|
// basic error check
|
|
if (nbPixels <= 0)
|
|
throw cv::Exception(-1, "Bad retina size setup : size height and with must be superior to zero", "RetinaImpl::setup", "retinafasttonemapping.cpp", 0);
|
|
|
|
// resize buffers
|
|
_inputBuffer.resize(nbPixels*3); // buffer supports gray images but also 3 channels color buffers... (larger is better...)
|
|
_imageOutput.resize(nbPixels*3);
|
|
_temp2.resize(nbPixels);
|
|
// allocate the main filter with 2 setup sets properties (one for each low pass filter
|
|
_multiuseFilter = makePtr<BasicRetinaFilter>(imageInput.height, imageInput.width, 2);
|
|
// allocate the color manager (multiplexer/demultiplexer
|
|
_colorEngine = makePtr<RetinaColor>(imageInput.height, imageInput.width);
|
|
// setup filter behaviors with default values
|
|
setup();
|
|
}
|
|
|
|
/**
|
|
* basic destructor
|
|
*/
|
|
virtual ~RetinaFastToneMappingImpl(){};
|
|
|
|
/**
|
|
* method that applies a luminance correction (initially High Dynamic Range (HDR) tone mapping) using only the 2 local adaptation stages of the retina parvocellular channel : photoreceptors level and ganlion cells level. Spatio temporal filtering is applied but limited to temporal smoothing and eventually high frequencies attenuation. This is a lighter method than the one available using the regular retina::run method. It is then faster but it does not include complete temporal filtering nor retina spectral whitening. Then, it can have a more limited effect on images with a very high dynamic range. This is an adptation of the original still image HDR tone mapping algorithm of David Alleyson, Sabine Susstruck and Laurence Meylan's work, please cite:
|
|
* -> Meylan L., Alleysson D., and Susstrunk S., A Model of Retinal Local Adaptation for the Tone Mapping of Color Filter Array Images, Journal of Optical Society of America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816
|
|
@param inputImage the input image to process RGB or gray levels
|
|
@param outputToneMappedImage the output tone mapped image
|
|
*/
|
|
virtual void applyFastToneMapping(InputArray inputImage, OutputArray outputToneMappedImage)
|
|
{
|
|
// first convert input image to the compatible format :
|
|
const bool colorMode = _convertCvMat2ValarrayBuffer(inputImage.getMat(), _inputBuffer);
|
|
|
|
// process tone mapping
|
|
if (colorMode)
|
|
{
|
|
_runRGBToneMapping(_inputBuffer, _imageOutput, true);
|
|
_convertValarrayBuffer2cvMat(_imageOutput, _multiuseFilter->getNBrows(), _multiuseFilter->getNBcolumns(), true, outputToneMappedImage);
|
|
}else
|
|
{
|
|
_runGrayToneMapping(_inputBuffer, _imageOutput);
|
|
_convertValarrayBuffer2cvMat(_imageOutput, _multiuseFilter->getNBrows(), _multiuseFilter->getNBcolumns(), false, outputToneMappedImage);
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* setup method that updates tone mapping behaviors by adjusing the local luminance computation area
|
|
* @param photoreceptorsNeighborhoodRadius the first stage local adaptation area
|
|
* @param ganglioncellsNeighborhoodRadius the second stage local adaptation area
|
|
* @param meanLuminanceModulatorK the factor applied to modulate the meanLuminance information (default is 1, see reference paper)
|
|
*/
|
|
virtual void setup(const float photoreceptorsNeighborhoodRadius=3.f, const float ganglioncellsNeighborhoodRadius=1.f, const float meanLuminanceModulatorK=1.f)
|
|
{
|
|
// setup the spatio-temporal properties of each filter
|
|
_meanLuminanceModulatorK = meanLuminanceModulatorK;
|
|
_multiuseFilter->setV0CompressionParameter(1.f, 255.f, 128.f);
|
|
_multiuseFilter->setLPfilterParameters(0.f, 0.f, photoreceptorsNeighborhoodRadius, 1);
|
|
_multiuseFilter->setLPfilterParameters(0.f, 0.f, ganglioncellsNeighborhoodRadius, 2);
|
|
}
|
|
|
|
private:
|
|
// a filter able to perform local adaptation and low pass spatio-temporal filtering
|
|
cv::Ptr <BasicRetinaFilter> _multiuseFilter;
|
|
cv::Ptr <RetinaColor> _colorEngine;
|
|
|
|
//!< buffer used to convert input cv::Mat to internal retina buffers format (valarrays)
|
|
std::valarray<float> _inputBuffer;
|
|
std::valarray<float> _imageOutput;
|
|
std::valarray<float> _temp2;
|
|
float _meanLuminanceModulatorK;
|
|
|
|
|
|
void _convertValarrayBuffer2cvMat(const std::valarray<float> &grayMatrixToConvert, const unsigned int nbRows, const unsigned int nbColumns, const bool colorMode, OutputArray outBuffer)
|
|
{
|
|
// fill output buffer with the valarray buffer
|
|
const float *valarrayPTR=get_data(grayMatrixToConvert);
|
|
if (!colorMode)
|
|
{
|
|
outBuffer.create(cv::Size(nbColumns, nbRows), CV_8U);
|
|
Mat outMat = outBuffer.getMat();
|
|
for (unsigned int i=0;i<nbRows;++i)
|
|
{
|
|
for (unsigned int j=0;j<nbColumns;++j)
|
|
{
|
|
cv::Point2d pixel(j,i);
|
|
outMat.at<unsigned char>(pixel)=(unsigned char)*(valarrayPTR++);
|
|
}
|
|
}
|
|
}else
|
|
{
|
|
const unsigned int nbPixels=nbColumns*nbRows;
|
|
const unsigned int doubleNBpixels=nbColumns*nbRows*2;
|
|
outBuffer.create(cv::Size(nbColumns, nbRows), CV_8UC3);
|
|
Mat outMat = outBuffer.getMat();
|
|
for (unsigned int i=0;i<nbRows;++i)
|
|
{
|
|
for (unsigned int j=0;j<nbColumns;++j,++valarrayPTR)
|
|
{
|
|
cv::Point2d pixel(j,i);
|
|
cv::Vec3b pixelValues;
|
|
pixelValues[2]=(unsigned char)*(valarrayPTR);
|
|
pixelValues[1]=(unsigned char)*(valarrayPTR+nbPixels);
|
|
pixelValues[0]=(unsigned char)*(valarrayPTR+doubleNBpixels);
|
|
|
|
outMat.at<cv::Vec3b>(pixel)=pixelValues;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool _convertCvMat2ValarrayBuffer(InputArray inputMat, std::valarray<float> &outputValarrayMatrix)
|
|
{
|
|
const Mat inputMatToConvert=inputMat.getMat();
|
|
// first check input consistency
|
|
if (inputMatToConvert.empty())
|
|
throw cv::Exception(-1, "RetinaImpl cannot be applied, input buffer is empty", "RetinaImpl::run", "RetinaImpl.h", 0);
|
|
|
|
// retreive color mode from image input
|
|
int imageNumberOfChannels = inputMatToConvert.channels();
|
|
|
|
// convert to float AND fill the valarray buffer
|
|
typedef float T; // define here the target pixel format, here, float
|
|
const int dsttype = DataType<T>::depth; // output buffer is float format
|
|
|
|
const unsigned int nbPixels=inputMat.getMat().rows*inputMat.getMat().cols;
|
|
const unsigned int doubleNBpixels=inputMat.getMat().rows*inputMat.getMat().cols*2;
|
|
|
|
if(imageNumberOfChannels==4)
|
|
{
|
|
// create a cv::Mat table (for RGBA planes)
|
|
cv::Mat planes[4] =
|
|
{
|
|
cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[doubleNBpixels]),
|
|
cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[nbPixels]),
|
|
cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[0])
|
|
};
|
|
planes[3] = cv::Mat(inputMatToConvert.size(), dsttype); // last channel (alpha) does not point on the valarray (not usefull in our case)
|
|
// split color cv::Mat in 4 planes... it fills valarray directely
|
|
cv::split(Mat_<Vec<T, 4> >(inputMatToConvert), planes);
|
|
}
|
|
else if (imageNumberOfChannels==3)
|
|
{
|
|
// create a cv::Mat table (for RGB planes)
|
|
cv::Mat planes[] =
|
|
{
|
|
cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[doubleNBpixels]),
|
|
cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[nbPixels]),
|
|
cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[0])
|
|
};
|
|
// split color cv::Mat in 3 planes... it fills valarray directely
|
|
cv::split(cv::Mat_<Vec<T, 3> >(inputMatToConvert), planes);
|
|
}
|
|
else if(imageNumberOfChannels==1)
|
|
{
|
|
// create a cv::Mat header for the valarray
|
|
cv::Mat dst(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[0]);
|
|
inputMatToConvert.convertTo(dst, dsttype);
|
|
}
|
|
else
|
|
CV_Error(Error::StsUnsupportedFormat, "input image must be single channel (gray levels), bgr format (color) or bgra (color with transparency which won't be considered");
|
|
|
|
return imageNumberOfChannels>1; // return bool : false for gray level image processing, true for color mode
|
|
}
|
|
|
|
|
|
// run the initilized retina filter in order to perform gray image tone mapping, after this call all retina outputs are updated
|
|
void _runGrayToneMapping(const std::valarray<float> &grayImageInput, std::valarray<float> &grayImageOutput)
|
|
{
|
|
// apply tone mapping on the multiplexed image
|
|
// -> photoreceptors local adaptation (large area adaptation)
|
|
_multiuseFilter->runFilter_LPfilter(grayImageInput, grayImageOutput, 0); // compute low pass filtering modeling the horizontal cells filtering to acess local luminance
|
|
_multiuseFilter->setV0CompressionParameterToneMapping(1.f, grayImageOutput.max(), _meanLuminanceModulatorK*grayImageOutput.sum()/(float)_multiuseFilter->getNBpixels());
|
|
_multiuseFilter->runFilter_LocalAdapdation(grayImageInput, grayImageOutput, _temp2); // adapt contrast to local luminance
|
|
|
|
// -> ganglion cells local adaptation (short area adaptation)
|
|
_multiuseFilter->runFilter_LPfilter(_temp2, grayImageOutput, 1); // compute low pass filtering (high cut frequency (remove spatio-temporal noise)
|
|
_multiuseFilter->setV0CompressionParameterToneMapping(1.f, _temp2.max(), _meanLuminanceModulatorK*grayImageOutput.sum()/(float)_multiuseFilter->getNBpixels());
|
|
_multiuseFilter->runFilter_LocalAdapdation(_temp2, grayImageOutput, grayImageOutput); // adapt contrast to local luminance
|
|
|
|
}
|
|
|
|
// run the initilized retina filter in order to perform color tone mapping, after this call all retina outputs are updated
|
|
void _runRGBToneMapping(const std::valarray<float> &RGBimageInput, std::valarray<float> &RGBimageOutput, const bool useAdaptiveFiltering)
|
|
{
|
|
// multiplex the image with the color sampling method specified in the constructor
|
|
_colorEngine->runColorMultiplexing(RGBimageInput);
|
|
|
|
// apply tone mapping on the multiplexed image
|
|
_runGrayToneMapping(_colorEngine->getMultiplexedFrame(), RGBimageOutput);
|
|
|
|
// demultiplex tone maped image
|
|
_colorEngine->runColorDemultiplexing(RGBimageOutput, useAdaptiveFiltering, _multiuseFilter->getMaxInputValue());//_ColorEngine->getMultiplexedFrame());//_ParvoRetinaFilter->getPhotoreceptorsLPfilteringOutput());
|
|
|
|
// rescaling result between 0 and 255
|
|
_colorEngine->normalizeRGBOutput_0_maxOutputValue(255.0);
|
|
|
|
// return the result
|
|
RGBimageOutput=_colorEngine->getDemultiplexedColorFrame();
|
|
}
|
|
|
|
};
|
|
|
|
CV_EXPORTS Ptr<RetinaFastToneMapping> createRetinaFastToneMapping(Size inputSize)
|
|
{
|
|
return makePtr<RetinaFastToneMappingImpl>(inputSize);
|
|
}
|
|
|
|
}// end of namespace bioinspired
|
|
}// end of namespace cv
|