opencv/modules/gapi/samples/onevpl_infer_single_roi.cpp
Sergey Ivanov d376fe9e17
Merge pull request #20921 from sivanov-work:atl_patch
G-API: FIX OpenVINO build - Add CComPtr RAII replacement into G-API sample

* Add CComPtr RAII replacement into G-API sample

* Remove completely `atlbase.h'
2021-10-21 16:12:03 +00:00

449 lines
16 KiB
C++

#include <algorithm>
#include <fstream>
#include <iostream>
#include <cctype>
#include <tuple>
#include <opencv2/imgproc.hpp>
#include <opencv2/gapi.hpp>
#include <opencv2/gapi/core.hpp>
#include <opencv2/gapi/cpu/gcpukernel.hpp>
#include <opencv2/gapi/infer/ie.hpp>
#include <opencv2/gapi/render.hpp>
#include <opencv2/gapi/streaming/onevpl/source.hpp>
#include <opencv2/gapi/streaming/onevpl/data_provider_interface.hpp>
#include <opencv2/highgui.hpp> // CommandLineParser
#ifdef HAVE_INF_ENGINE
#include <inference_engine.hpp> // ParamMap
#ifdef HAVE_DIRECTX
#ifdef HAVE_D3D11
#pragma comment(lib,"d3d11.lib")
// get rid of generate macro max/min/etc from DX side
#define D3D11_NO_HELPERS
#define NOMINMAX
#include <cldnn/cldnn_config.hpp>
#include <d3d11.h>
#pragma comment(lib, "dxgi")
#undef NOMINMAX
#undef D3D11_NO_HELPERS
#endif // HAVE_D3D11
#endif // HAVE_DIRECTX
#endif // HAVE_INF_ENGINE
const std::string about =
"This is an OpenCV-based version of oneVPLSource decoder example";
const std::string keys =
"{ h help | | Print this help message }"
"{ input | | Path to the input demultiplexed video file }"
"{ output | | Path to the output RAW video file. Use .avi extension }"
"{ facem | face-detection-adas-0001.xml | Path to OpenVINO IE face detection model (.xml) }"
"{ faced | CPU | Target device for face detection model (e.g. CPU, GPU, VPU, ...) }"
"{ cfg_params | <prop name>:<value>;<prop name>:<value> | Semicolon separated list of oneVPL mfxVariants which is used for configuring source (see `MFXSetConfigFilterProperty` by https://spec.oneapi.io/versions/latest/elements/oneVPL/source/index.html) }";
namespace {
std::string get_weights_path(const std::string &model_path) {
const auto EXT_LEN = 4u;
const auto sz = model_path.size();
CV_Assert(sz > EXT_LEN);
auto ext = model_path.substr(sz - EXT_LEN);
std::transform(ext.begin(), ext.end(), ext.begin(), [](unsigned char c){
return static_cast<unsigned char>(std::tolower(c));
});
CV_Assert(ext == ".xml");
return model_path.substr(0u, sz - EXT_LEN) + ".bin";
}
#ifdef HAVE_INF_ENGINE
#ifdef HAVE_DIRECTX
#ifdef HAVE_D3D11
// Since ATL headers might not be available on specific MSVS Build Tools
// we use simple `CComPtr` implementation like as `ComPtrGuard`
// which is not supposed to be the full functional replacement of `CComPtr`
// and it uses as RAII to make sure utilization is correct
template <typename COMNonManageableType>
void release(COMNonManageableType *ptr) {
if (ptr) {
ptr->Release();
}
}
template <typename COMNonManageableType>
using ComPtrGuard = std::unique_ptr<COMNonManageableType, decltype(&release<COMNonManageableType>)>;
template <typename COMNonManageableType>
ComPtrGuard<COMNonManageableType> createCOMPtrGuard(COMNonManageableType *ptr = nullptr) {
return ComPtrGuard<COMNonManageableType> {ptr, &release<COMNonManageableType>};
}
using AccelParamsType = std::tuple<ComPtrGuard<ID3D11Device>, ComPtrGuard<ID3D11DeviceContext>>;
AccelParamsType create_device_with_ctx(IDXGIAdapter* adapter) {
UINT flags = 0;
D3D_FEATURE_LEVEL feature_levels[] = { D3D_FEATURE_LEVEL_11_1,
D3D_FEATURE_LEVEL_11_0,
};
D3D_FEATURE_LEVEL featureLevel;
ID3D11Device* ret_device_ptr = nullptr;
ID3D11DeviceContext* ret_ctx_ptr = nullptr;
HRESULT err = D3D11CreateDevice(adapter, D3D_DRIVER_TYPE_UNKNOWN,
nullptr, flags,
feature_levels,
ARRAYSIZE(feature_levels),
D3D11_SDK_VERSION, &ret_device_ptr,
&featureLevel, &ret_ctx_ptr);
if (FAILED(err)) {
throw std::runtime_error("Cannot create D3D11CreateDevice, error: " +
std::to_string(HRESULT_CODE(err)));
}
return std::make_tuple(createCOMPtrGuard(ret_device_ptr),
createCOMPtrGuard(ret_ctx_ptr));
}
#endif // HAVE_D3D11
#endif // HAVE_DIRECTX
#endif // HAVE_INF_ENGINE
} // anonymous namespace
namespace custom {
G_API_NET(FaceDetector, <cv::GMat(cv::GMat)>, "face-detector");
using GDetections = cv::GArray<cv::Rect>;
using GRect = cv::GOpaque<cv::Rect>;
using GSize = cv::GOpaque<cv::Size>;
using GPrims = cv::GArray<cv::gapi::wip::draw::Prim>;
G_API_OP(LocateROI, <GRect(GSize)>, "sample.custom.locate-roi") {
static cv::GOpaqueDesc outMeta(const cv::GOpaqueDesc &) {
return cv::empty_gopaque_desc();
}
};
G_API_OP(ParseSSD, <GDetections(cv::GMat, GRect, GSize)>, "sample.custom.parse-ssd") {
static cv::GArrayDesc outMeta(const cv::GMatDesc &, const cv::GOpaqueDesc &, const cv::GOpaqueDesc &) {
return cv::empty_array_desc();
}
};
G_API_OP(BBoxes, <GPrims(GDetections, GRect)>, "sample.custom.b-boxes") {
static cv::GArrayDesc outMeta(const cv::GArrayDesc &, const cv::GOpaqueDesc &) {
return cv::empty_array_desc();
}
};
GAPI_OCV_KERNEL(OCVLocateROI, LocateROI) {
// This is the place where we can run extra analytics
// on the input image frame and select the ROI (region
// of interest) where we want to detect our objects (or
// run any other inference).
//
// Currently it doesn't do anything intelligent,
// but only crops the input image to square (this is
// the most convenient aspect ratio for detectors to use)
static void run(const cv::Size& in_size, cv::Rect &out_rect) {
// Identify the central point & square size (- some padding)
const auto center = cv::Point{in_size.width/2, in_size.height/2};
auto sqside = std::min(in_size.width, in_size.height);
// Now build the central square ROI
out_rect = cv::Rect{ center.x - sqside/2
, center.y - sqside/2
, sqside
, sqside
};
}
};
GAPI_OCV_KERNEL(OCVParseSSD, ParseSSD) {
static void run(const cv::Mat &in_ssd_result,
const cv::Rect &in_roi,
const cv::Size &in_parent_size,
std::vector<cv::Rect> &out_objects) {
const auto &in_ssd_dims = in_ssd_result.size;
CV_Assert(in_ssd_dims.dims() == 4u);
const int MAX_PROPOSALS = in_ssd_dims[2];
const int OBJECT_SIZE = in_ssd_dims[3];
CV_Assert(OBJECT_SIZE == 7); // fixed SSD object size
const cv::Size up_roi = in_roi.size();
const cv::Rect surface({0,0}, in_parent_size);
out_objects.clear();
const float *data = in_ssd_result.ptr<float>();
for (int i = 0; i < MAX_PROPOSALS; i++) {
const float image_id = data[i * OBJECT_SIZE + 0];
const float label = data[i * OBJECT_SIZE + 1];
const float confidence = data[i * OBJECT_SIZE + 2];
const float rc_left = data[i * OBJECT_SIZE + 3];
const float rc_top = data[i * OBJECT_SIZE + 4];
const float rc_right = data[i * OBJECT_SIZE + 5];
const float rc_bottom = data[i * OBJECT_SIZE + 6];
(void) label; // unused
if (image_id < 0.f) {
break; // marks end-of-detections
}
if (confidence < 0.5f) {
continue; // skip objects with low confidence
}
// map relative coordinates to the original image scale
// taking the ROI into account
cv::Rect rc;
rc.x = static_cast<int>(rc_left * up_roi.width);
rc.y = static_cast<int>(rc_top * up_roi.height);
rc.width = static_cast<int>(rc_right * up_roi.width) - rc.x;
rc.height = static_cast<int>(rc_bottom * up_roi.height) - rc.y;
rc.x += in_roi.x;
rc.y += in_roi.y;
out_objects.emplace_back(rc & surface);
}
}
};
GAPI_OCV_KERNEL(OCVBBoxes, BBoxes) {
// This kernel converts the rectangles into G-API's
// rendering primitives
static void run(const std::vector<cv::Rect> &in_face_rcs,
const cv::Rect &in_roi,
std::vector<cv::gapi::wip::draw::Prim> &out_prims) {
out_prims.clear();
const auto cvt = [](const cv::Rect &rc, const cv::Scalar &clr) {
return cv::gapi::wip::draw::Rect(rc, clr, 2);
};
out_prims.emplace_back(cvt(in_roi, CV_RGB(0,255,255))); // cyan
for (auto &&rc : in_face_rcs) {
out_prims.emplace_back(cvt(rc, CV_RGB(0,255,0))); // green
}
}
};
} // namespace custom
namespace cfg {
typename cv::gapi::wip::onevpl::CfgParam create_from_string(const std::string &line);
}
int main(int argc, char *argv[]) {
cv::CommandLineParser cmd(argc, argv, keys);
cmd.about(about);
if (cmd.has("help")) {
cmd.printMessage();
return 0;
}
// get file name
std::string file_path = cmd.get<std::string>("input");
const std::string output = cmd.get<std::string>("output");
const auto face_model_path = cmd.get<std::string>("facem");
// check ouput file extension
if (!output.empty()) {
auto ext = output.find_last_of(".");
if (ext == std::string::npos || (output.substr(ext + 1) != "avi")) {
std::cerr << "Output file should have *.avi extension for output video" << std::endl;
return -1;
}
}
// get oneVPL cfg params from cmd
std::stringstream params_list(cmd.get<std::string>("cfg_params"));
std::vector<cv::gapi::wip::onevpl::CfgParam> source_cfgs;
try {
std::string line;
while (std::getline(params_list, line, ';')) {
source_cfgs.push_back(cfg::create_from_string(line));
}
} catch (const std::exception& ex) {
std::cerr << "Invalid cfg parameter: " << ex.what() << std::endl;
return -1;
}
const std::string& device_id = cmd.get<std::string>("faced");
auto face_net = cv::gapi::ie::Params<custom::FaceDetector> {
face_model_path, // path to topology IR
get_weights_path(face_model_path), // path to weights
device_id
};
// Create device_ptr & context_ptr using graphic API
// InferenceEngine requires such device & context to create its own
// remote shared context through InferenceEngine::ParamMap in
// GAPI InferenceEngine backend to provide interoperability with onevpl::GSource
// So GAPI InferenceEngine backend and onevpl::GSource MUST share the same
// device and context
void* accel_device_ptr = nullptr;
void* accel_ctx_ptr = nullptr;
#ifdef HAVE_INF_ENGINE
#ifdef HAVE_DIRECTX
#ifdef HAVE_D3D11
auto dx11_dev = createCOMPtrGuard<ID3D11Device>();
auto dx11_ctx = createCOMPtrGuard<ID3D11DeviceContext>();
if (device_id.find("GPU") != std::string::npos) {
auto adapter_factory = createCOMPtrGuard<IDXGIFactory>();
{
IDXGIFactory* out_factory = nullptr;
HRESULT err = CreateDXGIFactory(__uuidof(IDXGIFactory),
reinterpret_cast<void**>(&out_factory));
if (FAILED(err)) {
std::cerr << "Cannot create CreateDXGIFactory, error: " << HRESULT_CODE(err) << std::endl;
return -1;
}
adapter_factory = createCOMPtrGuard(out_factory);
}
auto intel_adapter = createCOMPtrGuard<IDXGIAdapter>();
UINT adapter_index = 0;
const unsigned int refIntelVendorID = 0x8086;
IDXGIAdapter* out_adapter = nullptr;
while (adapter_factory->EnumAdapters(adapter_index, &out_adapter) != DXGI_ERROR_NOT_FOUND) {
DXGI_ADAPTER_DESC desc{};
out_adapter->GetDesc(&desc);
if (desc.VendorId == refIntelVendorID) {
intel_adapter = createCOMPtrGuard(out_adapter);
break;
}
++adapter_index;
}
if (!intel_adapter) {
std::cerr << "No Intel GPU adapter on aboard. Exit" << std::endl;
return -1;
}
std::tie(dx11_dev, dx11_ctx) = create_device_with_ctx(intel_adapter.get());
accel_device_ptr = reinterpret_cast<void*>(dx11_dev.get());
accel_ctx_ptr = reinterpret_cast<void*>(dx11_ctx.get());
// put accel type description for VPL source
source_cfgs.push_back(cfg::create_from_string(
"mfxImplDescription.AccelerationMode"
":"
"MFX_ACCEL_MODE_VIA_D3D11"));
}
#endif // HAVE_D3D11
#endif // HAVE_DIRECTX
// set ctx_config for GPU device only - no need in case of CPU device type
if (device_id.find("GPU") != std::string::npos) {
InferenceEngine::ParamMap ctx_config({{"CONTEXT_TYPE", "VA_SHARED"},
{"VA_DEVICE", accel_device_ptr} });
face_net.cfgContextParams(ctx_config);
}
#endif // HAVE_INF_ENGINE
auto kernels = cv::gapi::kernels
< custom::OCVLocateROI
, custom::OCVParseSSD
, custom::OCVBBoxes>();
auto networks = cv::gapi::networks(face_net);
// Create source
cv::Ptr<cv::gapi::wip::IStreamSource> cap;
try {
if (device_id.find("GPU") != std::string::npos) {
cap = cv::gapi::wip::make_onevpl_src(file_path, source_cfgs,
device_id,
accel_device_ptr,
accel_ctx_ptr);
} else {
cap = cv::gapi::wip::make_onevpl_src(file_path, source_cfgs);
}
std::cout << "oneVPL source desription: " << cap->descr_of() << std::endl;
} catch (const std::exception& ex) {
std::cerr << "Cannot create source: " << ex.what() << std::endl;
return -1;
}
cv::GMetaArg descr = cap->descr_of();
auto frame_descr = cv::util::get<cv::GFrameDesc>(descr);
// Now build the graph
cv::GFrame in;
auto size = cv::gapi::streaming::size(in);
auto roi = custom::LocateROI::on(size);
auto blob = cv::gapi::infer<custom::FaceDetector>(roi, in);
auto rcs = custom::ParseSSD::on(blob, roi, size);
auto out_frame = cv::gapi::wip::draw::renderFrame(in, custom::BBoxes::on(rcs, roi));
auto out = cv::gapi::streaming::BGR(out_frame);
cv::GStreamingCompiled pipeline;
try {
pipeline = cv::GComputation(cv::GIn(in), cv::GOut(out))
.compileStreaming(cv::compile_args(kernels, networks));
} catch (const std::exception& ex) {
std::cerr << "Exception occured during pipeline construction: " << ex.what() << std::endl;
return -1;
}
// The execution part
// TODO USE may set pool size from outside and set queue_capacity size,
// compile arg: cv::gapi::streaming::queue_capacity
pipeline.setSource(std::move(cap));
pipeline.start();
int framesCount = 0;
cv::TickMeter t;
cv::VideoWriter writer;
if (!output.empty() && !writer.isOpened()) {
const auto sz = cv::Size{frame_descr.size.width, frame_descr.size.height};
writer.open(output, cv::VideoWriter::fourcc('M','J','P','G'), 25.0, sz);
CV_Assert(writer.isOpened());
}
cv::Mat outMat;
t.start();
while (pipeline.pull(cv::gout(outMat))) {
cv::imshow("Out", outMat);
cv::waitKey(1);
if (!output.empty()) {
writer << outMat;
}
framesCount++;
}
t.stop();
std::cout << "Elapsed time: " << t.getTimeSec() << std::endl;
std::cout << "FPS: " << framesCount / t.getTimeSec() << std::endl;
std::cout << "framesCount: " << framesCount << std::endl;
return 0;
}
namespace cfg {
typename cv::gapi::wip::onevpl::CfgParam create_from_string(const std::string &line) {
using namespace cv::gapi::wip;
if (line.empty()) {
throw std::runtime_error("Cannot parse CfgParam from emply line");
}
std::string::size_type name_endline_pos = line.find(':');
if (name_endline_pos == std::string::npos) {
throw std::runtime_error("Cannot parse CfgParam from: " + line +
"\nExpected separator \":\"");
}
std::string name = line.substr(0, name_endline_pos);
std::string value = line.substr(name_endline_pos + 1);
return cv::gapi::wip::onevpl::CfgParam::create(name, value);
}
}