mirror of
https://github.com/opencv/opencv.git
synced 2025-01-05 18:05:31 +08:00
d981d04c76
cuda4dnn: optimizations for swish, mish, sigmoid, region, resize based ops, transpose, identity-conv fusion * bunch of optimizations * more accurate implementation for mish
121 lines
3.6 KiB
C++
121 lines
3.6 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#ifndef OPENCV_DNN_SRC_CUDA_VECTOR_TRAITS_HPP
|
|
#define OPENCV_DNN_SRC_CUDA_VECTOR_TRAITS_HPP
|
|
|
|
#include <cuda_runtime.h>
|
|
|
|
#include "types.hpp"
|
|
#include "memory.hpp"
|
|
|
|
#include "../cuda4dnn/csl/pointer.hpp"
|
|
|
|
#include <type_traits>
|
|
|
|
namespace cv { namespace dnn { namespace cuda4dnn { namespace csl { namespace device {
|
|
|
|
/** \file vector_traits.hpp
|
|
* \brief utility classes and functions for vectorized memory loads/stores
|
|
*
|
|
* Example:
|
|
* using vector_type = get_vector_type_t<float, 4>;
|
|
*
|
|
* auto input_vPtr = type::get_pointer(iptr); // iptr is of type DevicePtr<const float>
|
|
* auto output_vPtr = type::get_pointer(optr); // optr is of type DevicePtr<float>
|
|
*
|
|
* vector_type vec;
|
|
* v_load(vec, input_vPtr);
|
|
*
|
|
* for(int i = 0; i < vector_type::size(); i++)
|
|
* vec[i] = do_something(vec[i]);
|
|
*
|
|
* v_store(output_vPtr, vec);
|
|
*/
|
|
|
|
namespace detail {
|
|
template <size_type N> struct raw_type_ { };
|
|
template <> struct raw_type_<256> { typedef ulonglong4 type; };
|
|
template <> struct raw_type_<128> { typedef uint4 type; };
|
|
template <> struct raw_type_<64> { typedef uint2 type; };
|
|
template <> struct raw_type_<32> { typedef uint1 type; };
|
|
template <> struct raw_type_<16> { typedef uchar2 type; };
|
|
template <> struct raw_type_<8> { typedef uchar1 type; };
|
|
|
|
template <size_type N> struct raw_type {
|
|
using type = typename raw_type_<N>::type;
|
|
static_assert(sizeof(type) * 8 == N, "");
|
|
};
|
|
}
|
|
|
|
/* \tparam T type of element in the vector
|
|
* \tparam N "number of elements" of type T in the vector
|
|
*/
|
|
template <class T, size_type N>
|
|
union vector_type {
|
|
using value_type = T;
|
|
using raw_type = typename detail::raw_type<N * sizeof(T) * 8>::type;
|
|
|
|
__device__ vector_type() { }
|
|
|
|
__device__ static constexpr size_type size() { return N; }
|
|
|
|
raw_type raw;
|
|
T data[N];
|
|
|
|
template <class U> static __device__
|
|
typename std::enable_if<std::is_const<U>::value, const vector_type*>
|
|
::type get_pointer(csl::DevicePtr<U> ptr) {
|
|
return reinterpret_cast<const vector_type*>(ptr.get());
|
|
}
|
|
|
|
template <class U> static __device__
|
|
typename std::enable_if<!std::is_const<U>::value, vector_type*>
|
|
::type get_pointer(csl::DevicePtr<U> ptr) {
|
|
return reinterpret_cast<vector_type*>(ptr.get());
|
|
}
|
|
};
|
|
|
|
template <class V>
|
|
__device__ void v_load(V& dest, const V& src) {
|
|
dest.raw = src.raw;
|
|
}
|
|
|
|
template <class V>
|
|
__device__ void v_load(V& dest, const V* src) {
|
|
dest.raw = src->raw;
|
|
}
|
|
|
|
template <class V>
|
|
__device__ void v_load_ldg(V& dest, const V& src) {
|
|
dest.raw = load_ldg(src.raw);
|
|
}
|
|
|
|
template <class V>
|
|
__device__ void v_load_ldg(V& dest, const V* src) {
|
|
dest.raw = load_ldg(src->raw);
|
|
}
|
|
|
|
template <class V>
|
|
__device__ void v_store(V* dest, const V& src) {
|
|
dest->raw = src.raw;
|
|
}
|
|
|
|
template <class V>
|
|
__device__ void v_store(V& dest, const V& src) {
|
|
dest.raw = src.raw;
|
|
}
|
|
|
|
template <class T, size_type N>
|
|
struct get_vector_type {
|
|
typedef vector_type<T, N> type;
|
|
};
|
|
|
|
template <class T, size_type N>
|
|
using get_vector_type_t = typename get_vector_type<T, N>::type;
|
|
|
|
}}}}} /* namespace cv::dnn::cuda4dnn::csl::device */
|
|
|
|
#endif /* OPENCV_DNN_SRC_CUDA_VECTOR_TRAITS_HPP */
|