opencv/modules/dnn/src/init.cpp
Liubov Batanina d991c22090
Merge pull request #16575 from l-bat:flownet2
Support FlowNet2 model

* Support DataAugmentation layer

* Fix warnings

* Fix comments

* Support Correlation layer

* TEST

* Support Correlation layer

* Supported Accum and FlowWarp layers

* Supported ChannelNorm layer

* Supported Resample with inputs.size() > 1

* Fixed comments

* Refactoring

* Added tests

* Add resample test

* Added asserts in resize layer

* Updated DataAugmentation layer

* Update convolution layer

* Refactoring

* Fix data augmentation layer

* Fix caffe importer

* Fix resize

* Switch to Mat ptr

* Remove useless resize type

* Used ResizeLayer in Accum

* Split ChannelNormLayer

* Delete duplicate assert

* Add sample

* Fix sample

* Added colormap
2020-05-19 12:29:50 +00:00

145 lines
6.5 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <opencv2/dnn/layer.details.hpp>
#include <google/protobuf/stubs/common.h>
namespace cv {
namespace dnn {
CV__DNN_EXPERIMENTAL_NS_BEGIN
static Mutex* __initialization_mutex = NULL;
Mutex& getInitializationMutex()
{
if (__initialization_mutex == NULL)
__initialization_mutex = new Mutex();
return *__initialization_mutex;
}
// force initialization (single-threaded environment)
Mutex* __initialization_mutex_initializer = &getInitializationMutex();
namespace {
using namespace google::protobuf;
class ProtobufShutdown {
public:
bool initialized;
ProtobufShutdown() : initialized(true) {}
~ProtobufShutdown()
{
initialized = false;
google::protobuf::ShutdownProtobufLibrary();
}
};
} // namespace
void initializeLayerFactory()
{
CV_TRACE_FUNCTION();
static ProtobufShutdown protobufShutdown; CV_UNUSED(protobufShutdown);
CV_DNN_REGISTER_LAYER_CLASS(Slice, SliceLayer);
CV_DNN_REGISTER_LAYER_CLASS(Split, SplitLayer);
CV_DNN_REGISTER_LAYER_CLASS(Concat, ConcatLayer);
CV_DNN_REGISTER_LAYER_CLASS(Reshape, ReshapeLayer);
CV_DNN_REGISTER_LAYER_CLASS(Flatten, FlattenLayer);
CV_DNN_REGISTER_LAYER_CLASS(Resize, ResizeLayer);
CV_DNN_REGISTER_LAYER_CLASS(Interp, InterpLayer);
CV_DNN_REGISTER_LAYER_CLASS(CropAndResize, CropAndResizeLayer);
CV_DNN_REGISTER_LAYER_CLASS(Convolution, ConvolutionLayer);
CV_DNN_REGISTER_LAYER_CLASS(Deconvolution, DeconvolutionLayer);
CV_DNN_REGISTER_LAYER_CLASS(Pooling, PoolingLayer);
CV_DNN_REGISTER_LAYER_CLASS(ROIPooling, PoolingLayer);
CV_DNN_REGISTER_LAYER_CLASS(PSROIPooling, PoolingLayer);
CV_DNN_REGISTER_LAYER_CLASS(LRN, LRNLayer);
CV_DNN_REGISTER_LAYER_CLASS(InnerProduct, InnerProductLayer);
CV_DNN_REGISTER_LAYER_CLASS(Softmax, SoftmaxLayer);
CV_DNN_REGISTER_LAYER_CLASS(SoftMax, SoftmaxLayer); // For compatibility. See https://github.com/opencv/opencv/issues/16877
CV_DNN_REGISTER_LAYER_CLASS(MVN, MVNLayer);
CV_DNN_REGISTER_LAYER_CLASS(ReLU, ReLULayer);
CV_DNN_REGISTER_LAYER_CLASS(ReLU6, ReLU6Layer);
CV_DNN_REGISTER_LAYER_CLASS(ChannelsPReLU, ChannelsPReLULayer);
CV_DNN_REGISTER_LAYER_CLASS(PReLU, ChannelsPReLULayer);
CV_DNN_REGISTER_LAYER_CLASS(Sigmoid, SigmoidLayer);
CV_DNN_REGISTER_LAYER_CLASS(TanH, TanHLayer);
CV_DNN_REGISTER_LAYER_CLASS(Swish, SwishLayer);
CV_DNN_REGISTER_LAYER_CLASS(Mish, MishLayer);
CV_DNN_REGISTER_LAYER_CLASS(ELU, ELULayer);
CV_DNN_REGISTER_LAYER_CLASS(BNLL, BNLLLayer);
CV_DNN_REGISTER_LAYER_CLASS(AbsVal, AbsLayer);
CV_DNN_REGISTER_LAYER_CLASS(Power, PowerLayer);
CV_DNN_REGISTER_LAYER_CLASS(BatchNorm, BatchNormLayer);
CV_DNN_REGISTER_LAYER_CLASS(MaxUnpool, MaxUnpoolLayer);
CV_DNN_REGISTER_LAYER_CLASS(Dropout, BlankLayer);
CV_DNN_REGISTER_LAYER_CLASS(Identity, BlankLayer);
CV_DNN_REGISTER_LAYER_CLASS(Silence, BlankLayer);
CV_DNN_REGISTER_LAYER_CLASS(Const, ConstLayer);
CV_DNN_REGISTER_LAYER_CLASS(Crop, CropLayer);
CV_DNN_REGISTER_LAYER_CLASS(Eltwise, EltwiseLayer);
CV_DNN_REGISTER_LAYER_CLASS(Permute, PermuteLayer);
CV_DNN_REGISTER_LAYER_CLASS(ShuffleChannel, ShuffleChannelLayer);
CV_DNN_REGISTER_LAYER_CLASS(PriorBox, PriorBoxLayer);
CV_DNN_REGISTER_LAYER_CLASS(PriorBoxClustered, PriorBoxLayer);
CV_DNN_REGISTER_LAYER_CLASS(Reorg, ReorgLayer);
CV_DNN_REGISTER_LAYER_CLASS(Region, RegionLayer);
CV_DNN_REGISTER_LAYER_CLASS(DetectionOutput, DetectionOutputLayer);
CV_DNN_REGISTER_LAYER_CLASS(NormalizeBBox, NormalizeBBoxLayer);
CV_DNN_REGISTER_LAYER_CLASS(Normalize, NormalizeBBoxLayer);
CV_DNN_REGISTER_LAYER_CLASS(Shift, ShiftLayer);
CV_DNN_REGISTER_LAYER_CLASS(Padding, PaddingLayer);
CV_DNN_REGISTER_LAYER_CLASS(Proposal, ProposalLayer);
CV_DNN_REGISTER_LAYER_CLASS(Scale, ScaleLayer);
CV_DNN_REGISTER_LAYER_CLASS(DataAugmentation, DataAugmentationLayer);
CV_DNN_REGISTER_LAYER_CLASS(Correlation, CorrelationLayer);
CV_DNN_REGISTER_LAYER_CLASS(Accum, AccumLayer);
CV_DNN_REGISTER_LAYER_CLASS(FlowWarp, FlowWarpLayer);
CV_DNN_REGISTER_LAYER_CLASS(LSTM, LSTMLayer);
}
CV__DNN_EXPERIMENTAL_NS_END
}} // namespace