mirror of
https://github.com/opencv/opencv.git
synced 2025-06-18 16:11:50 +08:00

Make sure to not access outside normDiffTabMake sure to not access outside normDiffTab #27321 If the norm is outside the array (e.g. Hamming), memory is read outside of the array, which does not matter because the invalid pointer is not used oustide of the function (e.g. the Hamming path is taken) but it triggers the sanitizer. ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [ ] The feature is well documented and sample code can be built with the project CMake
874 lines
30 KiB
C++
874 lines
30 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html
|
|
|
|
|
|
#include "precomp.hpp"
|
|
#include "opencl_kernels_core.hpp"
|
|
#include "stat.hpp"
|
|
|
|
#include "norm.simd.hpp"
|
|
#include "norm.simd_declarations.hpp"
|
|
|
|
/****************************************************************************************\
|
|
* norm *
|
|
\****************************************************************************************/
|
|
|
|
namespace cv { namespace hal {
|
|
|
|
extern const uchar popCountTable[256] =
|
|
{
|
|
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
|
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
|
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
|
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
|
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
|
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
|
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
|
|
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
|
|
};
|
|
|
|
static const uchar popCountTable2[] =
|
|
{
|
|
0, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3,
|
|
1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3,
|
|
1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4,
|
|
2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4,
|
|
1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4,
|
|
2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4,
|
|
1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4,
|
|
2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4
|
|
};
|
|
|
|
static const uchar popCountTable4[] =
|
|
{
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
|
|
};
|
|
|
|
|
|
int normHamming(const uchar* a, int n, int cellSize)
|
|
{
|
|
int output;
|
|
CALL_HAL_RET(normHamming8u, cv_hal_normHamming8u, output, a, n, cellSize);
|
|
|
|
if( cellSize == 1 )
|
|
return normHamming(a, n);
|
|
const uchar* tab = 0;
|
|
if( cellSize == 2 )
|
|
tab = popCountTable2;
|
|
else if( cellSize == 4 )
|
|
tab = popCountTable4;
|
|
else
|
|
return -1;
|
|
int i = 0;
|
|
int result = 0;
|
|
#if (CV_SIMD || CV_SIMD_SCALABLE)
|
|
v_uint64 t = vx_setzero_u64();
|
|
if ( cellSize == 2)
|
|
{
|
|
v_uint16 mask = v_reinterpret_as_u16(vx_setall_u8(0x55));
|
|
for(; i <= n - VTraits<v_uint8>::vlanes(); i += VTraits<v_uint8>::vlanes())
|
|
{
|
|
v_uint16 a0 = v_reinterpret_as_u16(vx_load(a + i));
|
|
t = v_add(t, v_popcount(v_reinterpret_as_u64(v_and(v_or(a0, v_shr<1>(a0)), mask))));
|
|
}
|
|
}
|
|
else // cellSize == 4
|
|
{
|
|
v_uint16 mask = v_reinterpret_as_u16(vx_setall_u8(0x11));
|
|
for(; i <= n - VTraits<v_uint8>::vlanes(); i += VTraits<v_uint8>::vlanes())
|
|
{
|
|
v_uint16 a0 = v_reinterpret_as_u16(vx_load(a + i));
|
|
v_uint16 a1 = v_or(a0, v_shr<2>(a0));
|
|
t = v_add(t, v_popcount(v_reinterpret_as_u64(v_and(v_or(a1, v_shr<1>(a1)), mask))));
|
|
|
|
}
|
|
}
|
|
result += (int)v_reduce_sum(t);
|
|
vx_cleanup();
|
|
#elif CV_ENABLE_UNROLLED
|
|
for( ; i <= n - 4; i += 4 )
|
|
result += tab[a[i]] + tab[a[i+1]] + tab[a[i+2]] + tab[a[i+3]];
|
|
#endif
|
|
for( ; i < n; i++ )
|
|
result += tab[a[i]];
|
|
return result;
|
|
}
|
|
|
|
int normHamming(const uchar* a, const uchar* b, int n, int cellSize)
|
|
{
|
|
int output;
|
|
CALL_HAL_RET(normHammingDiff8u, cv_hal_normHammingDiff8u, output, a, b, n, cellSize);
|
|
|
|
if( cellSize == 1 )
|
|
return normHamming(a, b, n);
|
|
const uchar* tab = 0;
|
|
if( cellSize == 2 )
|
|
tab = popCountTable2;
|
|
else if( cellSize == 4 )
|
|
tab = popCountTable4;
|
|
else
|
|
return -1;
|
|
int i = 0;
|
|
int result = 0;
|
|
#if (CV_SIMD || CV_SIMD_SCALABLE)
|
|
v_uint64 t = vx_setzero_u64();
|
|
if ( cellSize == 2)
|
|
{
|
|
v_uint16 mask = v_reinterpret_as_u16(vx_setall_u8(0x55));
|
|
for(; i <= n - VTraits<v_uint8>::vlanes(); i += VTraits<v_uint8>::vlanes())
|
|
{
|
|
v_uint16 ab0 = v_reinterpret_as_u16(v_xor(vx_load(a + i), vx_load(b + i)));
|
|
t = v_add(t, v_popcount(v_reinterpret_as_u64(v_and(v_or(ab0, v_shr<1>(ab0)), mask))));
|
|
}
|
|
}
|
|
else // cellSize == 4
|
|
{
|
|
v_uint16 mask = v_reinterpret_as_u16(vx_setall_u8(0x11));
|
|
for(; i <= n - VTraits<v_uint8>::vlanes(); i += VTraits<v_uint8>::vlanes())
|
|
{
|
|
v_uint16 ab0 = v_reinterpret_as_u16(v_xor(vx_load(a + i), vx_load(b + i)));
|
|
v_uint16 ab1 = v_or(ab0, v_shr<2>(ab0));
|
|
t = v_add(t, v_popcount(v_reinterpret_as_u64(v_and(v_or(ab1, v_shr<1>(ab1)), mask))));
|
|
}
|
|
}
|
|
result += (int)v_reduce_sum(t);
|
|
vx_cleanup();
|
|
#elif CV_ENABLE_UNROLLED
|
|
for( ; i <= n - 4; i += 4 )
|
|
result += tab[a[i] ^ b[i]] + tab[a[i+1] ^ b[i+1]] +
|
|
tab[a[i+2] ^ b[i+2]] + tab[a[i+3] ^ b[i+3]];
|
|
#endif
|
|
for( ; i < n; i++ )
|
|
result += tab[a[i] ^ b[i]];
|
|
return result;
|
|
}
|
|
|
|
float normL2Sqr_(const float* a, const float* b, int n)
|
|
{
|
|
int j = 0; float d = 0.f;
|
|
#if (CV_SIMD || CV_SIMD_SCALABLE)
|
|
v_float32 v_d0 = vx_setzero_f32(), v_d1 = vx_setzero_f32();
|
|
v_float32 v_d2 = vx_setzero_f32(), v_d3 = vx_setzero_f32();
|
|
for (; j <= n - 4 * VTraits<v_float32>::vlanes(); j += 4 * VTraits<v_float32>::vlanes())
|
|
{
|
|
v_float32 t0 = v_sub(vx_load(a + j), vx_load(b + j));
|
|
v_float32 t1 = v_sub(vx_load(a + j + VTraits<v_float32>::vlanes()), vx_load(b + j + VTraits<v_float32>::vlanes()));
|
|
v_d0 = v_muladd(t0, t0, v_d0);
|
|
v_float32 t2 = v_sub(vx_load(a + j + 2 * VTraits<v_float32>::vlanes()), vx_load(b + j + 2 * VTraits<v_float32>::vlanes()));
|
|
v_d1 = v_muladd(t1, t1, v_d1);
|
|
v_float32 t3 = v_sub(vx_load(a + j + 3 * VTraits<v_float32>::vlanes()), vx_load(b + j + 3 * VTraits<v_float32>::vlanes()));
|
|
v_d2 = v_muladd(t2, t2, v_d2);
|
|
v_d3 = v_muladd(t3, t3, v_d3);
|
|
}
|
|
d = v_reduce_sum(v_add(v_add(v_add(v_d0, v_d1), v_d2), v_d3));
|
|
#endif
|
|
for( ; j < n; j++ )
|
|
{
|
|
float t = a[j] - b[j];
|
|
d += t*t;
|
|
}
|
|
return d;
|
|
}
|
|
|
|
|
|
float normL1_(const float* a, const float* b, int n)
|
|
{
|
|
int j = 0; float d = 0.f;
|
|
#if (CV_SIMD || CV_SIMD_SCALABLE)
|
|
v_float32 v_d0 = vx_setzero_f32(), v_d1 = vx_setzero_f32();
|
|
v_float32 v_d2 = vx_setzero_f32(), v_d3 = vx_setzero_f32();
|
|
for (; j <= n - 4 * VTraits<v_float32>::vlanes(); j += 4 * VTraits<v_float32>::vlanes())
|
|
{
|
|
v_d0 = v_add(v_d0, v_absdiff(vx_load(a + j), vx_load(b + j)));
|
|
v_d1 = v_add(v_d1, v_absdiff(vx_load(a + j + VTraits<v_float32>::vlanes()), vx_load(b + j + VTraits<v_float32>::vlanes())));
|
|
v_d2 = v_add(v_d2, v_absdiff(vx_load(a + j + 2 * VTraits<v_float32>::vlanes()), vx_load(b + j + 2 * VTraits<v_float32>::vlanes())));
|
|
v_d3 = v_add(v_d3, v_absdiff(vx_load(a + j + 3 * VTraits<v_float32>::vlanes()), vx_load(b + j + 3 * VTraits<v_float32>::vlanes())));
|
|
}
|
|
d = v_reduce_sum(v_add(v_add(v_add(v_d0, v_d1), v_d2), v_d3));
|
|
#endif
|
|
for( ; j < n; j++ )
|
|
d += std::abs(a[j] - b[j]);
|
|
return d;
|
|
}
|
|
|
|
int normL1_(const uchar* a, const uchar* b, int n)
|
|
{
|
|
int j = 0, d = 0;
|
|
#if (CV_SIMD || CV_SIMD_SCALABLE)
|
|
for (; j <= n - 4 * VTraits<v_uint8>::vlanes(); j += 4 * VTraits<v_uint8>::vlanes())
|
|
d += v_reduce_sad(vx_load(a + j), vx_load(b + j)) +
|
|
v_reduce_sad(vx_load(a + j + VTraits<v_uint8>::vlanes()), vx_load(b + j + VTraits<v_uint8>::vlanes())) +
|
|
v_reduce_sad(vx_load(a + j + 2 * VTraits<v_uint8>::vlanes()), vx_load(b + j + 2 * VTraits<v_uint8>::vlanes())) +
|
|
v_reduce_sad(vx_load(a + j + 3 * VTraits<v_uint8>::vlanes()), vx_load(b + j + 3 * VTraits<v_uint8>::vlanes()));
|
|
#endif
|
|
for( ; j < n; j++ )
|
|
d += std::abs(a[j] - b[j]);
|
|
return d;
|
|
}
|
|
|
|
} //cv::hal
|
|
|
|
//==================================================================================================
|
|
|
|
typedef int (*NormFunc)(const uchar*, const uchar*, uchar*, int, int);
|
|
typedef int (*NormDiffFunc)(const uchar*, const uchar*, const uchar*, uchar*, int, int);
|
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
static bool ocl_norm( InputArray _src, int normType, InputArray _mask, double & result )
|
|
{
|
|
const ocl::Device & d = ocl::Device::getDefault();
|
|
|
|
#ifdef __ANDROID__
|
|
if (d.isNVidia())
|
|
return false;
|
|
#endif
|
|
const int cn = _src.channels();
|
|
if (cn > 4)
|
|
return false;
|
|
int type = _src.type(), depth = CV_MAT_DEPTH(type);
|
|
bool doubleSupport = d.doubleFPConfig() > 0,
|
|
haveMask = _mask.kind() != _InputArray::NONE;
|
|
|
|
if (depth >= CV_16F)
|
|
return false; // TODO: support FP16
|
|
|
|
if ( !(normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 || normType == NORM_L2SQR) ||
|
|
(!doubleSupport && depth == CV_64F))
|
|
return false;
|
|
|
|
UMat src = _src.getUMat();
|
|
|
|
if (normType == NORM_INF)
|
|
{
|
|
if (!ocl_minMaxIdx(_src, NULL, &result, NULL, NULL, _mask,
|
|
std::max(depth, CV_32S), depth != CV_8U && depth != CV_16U))
|
|
return false;
|
|
}
|
|
else if (normType == NORM_L1 || normType == NORM_L2 || normType == NORM_L2SQR)
|
|
{
|
|
Scalar sc;
|
|
bool unstype = depth == CV_8U || depth == CV_16U;
|
|
|
|
if ( !ocl_sum(haveMask ? src : src.reshape(1), sc, normType == NORM_L2 || normType == NORM_L2SQR ?
|
|
OCL_OP_SUM_SQR : (unstype ? OCL_OP_SUM : OCL_OP_SUM_ABS), _mask) )
|
|
return false;
|
|
|
|
double s = 0.0;
|
|
for (int i = 0; i < (haveMask ? cn : 1); ++i)
|
|
s += sc[i];
|
|
|
|
result = normType == NORM_L1 || normType == NORM_L2SQR ? s : std::sqrt(s);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
#endif
|
|
|
|
static NormFunc getNormFunc(int normType, int depth) {
|
|
CV_INSTRUMENT_REGION();
|
|
CV_CPU_DISPATCH(getNormFunc, (normType, depth), CV_CPU_DISPATCH_MODES_ALL);
|
|
}
|
|
static NormDiffFunc getNormDiffFunc(int normType, int depth) {
|
|
CV_INSTRUMENT_REGION();
|
|
CV_CPU_DISPATCH(getNormDiffFunc, (normType, depth), CV_CPU_DISPATCH_MODES_ALL);
|
|
}
|
|
|
|
double norm( InputArray _src, int normType, InputArray _mask )
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
normType &= NORM_TYPE_MASK;
|
|
CV_Assert( normType == NORM_INF || normType == NORM_L1 ||
|
|
normType == NORM_L2 || normType == NORM_L2SQR ||
|
|
((normType == NORM_HAMMING || normType == NORM_HAMMING2) && _src.type() == CV_8U) );
|
|
|
|
#if defined HAVE_OPENCL
|
|
double _result = 0;
|
|
#endif
|
|
|
|
#ifdef HAVE_OPENCL
|
|
CV_OCL_RUN_(OCL_PERFORMANCE_CHECK(_src.isUMat()) && _src.dims() <= 2,
|
|
ocl_norm(_src, normType, _mask, _result),
|
|
_result)
|
|
#endif
|
|
|
|
Mat src = _src.getMat(), mask = _mask.getMat();
|
|
int depth = src.depth(), cn = src.channels();
|
|
if( src.dims <= 2 )
|
|
{
|
|
double result;
|
|
CALL_HAL_RET(norm, cv_hal_norm, result, src.data, src.step, mask.data, mask.step, src.cols, src.rows, src.type(), normType);
|
|
}
|
|
else if( src.isContinuous() && mask.isContinuous() )
|
|
{
|
|
double result;
|
|
CALL_HAL_RET(norm, cv_hal_norm, result, src.data, 0, mask.data, 0, (int)src.total(), 1, src.type(), normType);
|
|
}
|
|
|
|
NormFunc func = getNormFunc(normType >> 1, depth == CV_16F ? CV_32F : depth);
|
|
CV_Assert( func != 0 );
|
|
|
|
if( src.isContinuous() && mask.empty() )
|
|
{
|
|
size_t len = src.total()*cn;
|
|
if( len == (size_t)(int)len )
|
|
{
|
|
if( depth == CV_32F )
|
|
{
|
|
const uchar* data = src.ptr<const uchar>();
|
|
|
|
if( normType == NORM_L2 || normType == NORM_L2SQR || normType == NORM_L1 )
|
|
{
|
|
double result = 0;
|
|
func(data, 0, (uchar*)&result, (int)len, 1);
|
|
return normType == NORM_L2 ? std::sqrt(result) : result;
|
|
}
|
|
if( normType == NORM_INF )
|
|
{
|
|
float result = 0;
|
|
func(data, 0, (uchar*)&result, (int)len, 1);
|
|
return result;
|
|
}
|
|
}
|
|
if( depth == CV_8U )
|
|
{
|
|
const uchar* data = src.ptr<uchar>();
|
|
|
|
if( normType == NORM_HAMMING )
|
|
{
|
|
return hal::normHamming(data, (int)len, 1);
|
|
}
|
|
|
|
if( normType == NORM_HAMMING2 )
|
|
{
|
|
return hal::normHamming(data, (int)len, 2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
CV_Assert( mask.empty() || mask.type() == CV_8U );
|
|
|
|
if( normType == NORM_HAMMING || normType == NORM_HAMMING2 )
|
|
{
|
|
if( !mask.empty() )
|
|
{
|
|
Mat temp;
|
|
bitwise_and(src, mask, temp);
|
|
return norm(temp, normType);
|
|
}
|
|
int cellSize = normType == NORM_HAMMING ? 1 : 2;
|
|
|
|
const Mat* arrays[] = {&src, 0};
|
|
uchar* ptrs[1] = {};
|
|
NAryMatIterator it(arrays, ptrs);
|
|
int total = (int)it.size;
|
|
int result = 0;
|
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it )
|
|
{
|
|
result += hal::normHamming(ptrs[0], total, cellSize);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
const Mat* arrays[] = {&src, &mask, 0};
|
|
uchar* ptrs[2] = {};
|
|
union
|
|
{
|
|
double d;
|
|
int i;
|
|
float f;
|
|
}
|
|
result;
|
|
result.d = 0;
|
|
NAryMatIterator it(arrays, ptrs);
|
|
CV_CheckLT((size_t)it.size, (size_t)INT_MAX, "");
|
|
|
|
if ((normType == NORM_L1 && depth <= CV_16S) ||
|
|
((normType == NORM_L2 || normType == NORM_L2SQR) && depth <= CV_8S))
|
|
{
|
|
// special case to handle "integer" overflow in accumulator
|
|
const size_t esz = src.elemSize();
|
|
const int total = (int)it.size;
|
|
const int intSumBlockSize = (normType == NORM_L1 && depth <= CV_8S ? (1 << 23) : (1 << 15))/cn;
|
|
const int blockSize = std::min(total, intSumBlockSize);
|
|
int isum = 0;
|
|
int count = 0;
|
|
|
|
for (size_t i = 0; i < it.nplanes; i++, ++it)
|
|
{
|
|
for (int j = 0; j < total; j += blockSize)
|
|
{
|
|
int bsz = std::min(total - j, blockSize);
|
|
func(ptrs[0], ptrs[1], (uchar*)&isum, bsz, cn);
|
|
count += bsz;
|
|
if (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total))
|
|
{
|
|
result.d += isum;
|
|
isum = 0;
|
|
count = 0;
|
|
}
|
|
ptrs[0] += bsz*esz;
|
|
if (ptrs[1])
|
|
ptrs[1] += bsz;
|
|
}
|
|
}
|
|
}
|
|
else if (depth == CV_16F)
|
|
{
|
|
const size_t esz = src.elemSize();
|
|
const int total = (int)it.size;
|
|
const int blockSize = std::min(total, divUp(1024, cn));
|
|
AutoBuffer<float, 1026/*divUp(1024,3)*3*/> fltbuf(blockSize * cn);
|
|
float* data0 = fltbuf.data();
|
|
for (size_t i = 0; i < it.nplanes; i++, ++it)
|
|
{
|
|
for (int j = 0; j < total; j += blockSize)
|
|
{
|
|
int bsz = std::min(total - j, blockSize);
|
|
hal::cvt16f32f((const hfloat*)ptrs[0], data0, bsz * cn);
|
|
func((uchar*)data0, ptrs[1], (uchar*)&result.f, bsz, cn);
|
|
ptrs[0] += bsz*esz;
|
|
if (ptrs[1])
|
|
ptrs[1] += bsz;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// generic implementation
|
|
for (size_t i = 0; i < it.nplanes; i++, ++it)
|
|
{
|
|
func(ptrs[0], ptrs[1], (uchar*)&result, (int)it.size, cn);
|
|
}
|
|
}
|
|
|
|
if( normType == NORM_INF )
|
|
{
|
|
if(depth == CV_64F)
|
|
return result.d;
|
|
else if (depth == CV_32F || depth == CV_16F)
|
|
return result.f;
|
|
else
|
|
return result.i;
|
|
}
|
|
else if( normType == NORM_L2 )
|
|
return std::sqrt(result.d);
|
|
|
|
return result.d;
|
|
}
|
|
|
|
//==================================================================================================
|
|
|
|
#ifdef HAVE_OPENCL
|
|
static bool ocl_norm( InputArray _src1, InputArray _src2, int normType, InputArray _mask, double & result )
|
|
{
|
|
#ifdef __ANDROID__
|
|
if (ocl::Device::getDefault().isNVidia())
|
|
return false;
|
|
#endif
|
|
|
|
Scalar sc1, sc2;
|
|
int cn = _src1.channels();
|
|
if (cn > 4)
|
|
return false;
|
|
int type = _src1.type(), depth = CV_MAT_DEPTH(type);
|
|
bool relative = (normType & NORM_RELATIVE) != 0;
|
|
normType &= ~NORM_RELATIVE;
|
|
bool normsum = normType == NORM_L1 || normType == NORM_L2 || normType == NORM_L2SQR;
|
|
|
|
#ifdef __APPLE__
|
|
if(normType == NORM_L1 && type == CV_16UC3 && !_mask.empty())
|
|
return false;
|
|
#endif
|
|
|
|
if (normsum)
|
|
{
|
|
if (!ocl_sum(_src1, sc1, normType == NORM_L2 || normType == NORM_L2SQR ?
|
|
OCL_OP_SUM_SQR : OCL_OP_SUM, _mask, _src2, relative, sc2))
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
if (!ocl_minMaxIdx(_src1, NULL, &sc1[0], NULL, NULL, _mask, std::max(CV_32S, depth),
|
|
false, _src2, relative ? &sc2[0] : NULL))
|
|
return false;
|
|
cn = 1;
|
|
}
|
|
|
|
double s2 = 0;
|
|
for (int i = 0; i < cn; ++i)
|
|
{
|
|
result += sc1[i];
|
|
if (relative)
|
|
s2 += sc2[i];
|
|
}
|
|
|
|
if (normType == NORM_L2)
|
|
{
|
|
result = std::sqrt(result);
|
|
if (relative)
|
|
s2 = std::sqrt(s2);
|
|
}
|
|
|
|
if (relative)
|
|
result /= (s2 + DBL_EPSILON);
|
|
|
|
return true;
|
|
} // ocl_norm()
|
|
#endif // HAVE_OPENCL
|
|
|
|
double norm( InputArray _src1, InputArray _src2, int normType, InputArray _mask )
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
CV_CheckTypeEQ(_src1.type(), _src2.type(), "Input type mismatch");
|
|
CV_Assert(_src1.sameSize(_src2));
|
|
|
|
#if defined HAVE_OPENCL
|
|
double _result = 0;
|
|
#endif
|
|
|
|
#ifdef HAVE_OPENCL
|
|
CV_OCL_RUN_(OCL_PERFORMANCE_CHECK(_src1.isUMat()),
|
|
ocl_norm(_src1, _src2, normType, _mask, _result),
|
|
_result)
|
|
#endif
|
|
|
|
Mat src1 = _src1.getMat(), src2 = _src2.getMat(), mask = _mask.getMat();
|
|
int depth = src1.depth(), cn = src1.channels();
|
|
if( src1.dims <= 2 )
|
|
{
|
|
double result;
|
|
CALL_HAL_RET(normDiff, cv_hal_normDiff, result, src1.data, src1.step, src2.data, src2.step, mask.data, mask.step, src1.cols, src1.rows, src1.type(), normType);
|
|
}
|
|
else if( src1.isContinuous() && src2.isContinuous() && mask.isContinuous() )
|
|
{
|
|
double result;
|
|
CALL_HAL_RET(normDiff, cv_hal_normDiff, result, src1.data, 0, src2.data, 0, mask.data, 0, (int)src1.total(), 1, src1.type(), normType);
|
|
}
|
|
|
|
if( normType & CV_RELATIVE )
|
|
{
|
|
return norm(_src1, _src2, normType & ~CV_RELATIVE, _mask)/(norm(_src2, normType, _mask) + DBL_EPSILON);
|
|
}
|
|
|
|
normType &= 7;
|
|
CV_Assert( normType == NORM_INF || normType == NORM_L1 ||
|
|
normType == NORM_L2 || normType == NORM_L2SQR ||
|
|
((normType == NORM_HAMMING || normType == NORM_HAMMING2) && src1.type() == CV_8U) );
|
|
|
|
NormDiffFunc func = getNormDiffFunc(normType >> 1, depth == CV_16F ? CV_32F : depth);
|
|
CV_Assert( (normType >> 1) >= 3 || func != 0 );
|
|
|
|
if( src1.isContinuous() && src2.isContinuous() && mask.empty() )
|
|
{
|
|
size_t len = src1.total()*src1.channels();
|
|
if( len == (size_t)(int)len )
|
|
{
|
|
if( src1.depth() == CV_32F )
|
|
{
|
|
const uchar* data1 = src1.ptr<const uchar>();
|
|
const uchar* data2 = src2.ptr<const uchar>();
|
|
|
|
if( normType == NORM_L2 || normType == NORM_L2SQR || normType == NORM_L1 )
|
|
{
|
|
double result = 0;
|
|
func(data1, data2, 0, (uchar*)&result, (int)len, 1);
|
|
return normType == NORM_L2 ? std::sqrt(result) : result;
|
|
}
|
|
if( normType == NORM_INF )
|
|
{
|
|
float result = 0;
|
|
func(data1, data2, 0, (uchar*)&result, (int)len, 1);
|
|
return result;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
CV_Assert( mask.empty() || mask.type() == CV_8U );
|
|
|
|
if( normType == NORM_HAMMING || normType == NORM_HAMMING2 )
|
|
{
|
|
if( !mask.empty() )
|
|
{
|
|
Mat temp;
|
|
bitwise_xor(src1, src2, temp);
|
|
bitwise_and(temp, mask, temp);
|
|
return norm(temp, normType);
|
|
}
|
|
int cellSize = normType == NORM_HAMMING ? 1 : 2;
|
|
|
|
const Mat* arrays[] = {&src1, &src2, 0};
|
|
uchar* ptrs[2] = {};
|
|
NAryMatIterator it(arrays, ptrs);
|
|
int total = (int)it.size;
|
|
int result = 0;
|
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it )
|
|
{
|
|
result += hal::normHamming(ptrs[0], ptrs[1], total, cellSize);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
const Mat* arrays[] = {&src1, &src2, &mask, 0};
|
|
uchar* ptrs[3] = {};
|
|
union
|
|
{
|
|
double d;
|
|
float f;
|
|
int i;
|
|
unsigned u;
|
|
}
|
|
result;
|
|
result.d = 0;
|
|
NAryMatIterator it(arrays, ptrs);
|
|
CV_CheckLT((size_t)it.size, (size_t)INT_MAX, "");
|
|
|
|
if ((normType == NORM_L1 && depth <= CV_16S) ||
|
|
((normType == NORM_L2 || normType == NORM_L2SQR) && depth <= CV_8S))
|
|
{
|
|
// special case to handle "integer" overflow in accumulator
|
|
const size_t esz = src1.elemSize();
|
|
const int total = (int)it.size;
|
|
const int intSumBlockSize = (normType == NORM_L1 && depth <= CV_8S ? (1 << 23) : (1 << 15))/cn;
|
|
const int blockSize = std::min(total, intSumBlockSize);
|
|
int isum = 0;
|
|
int count = 0;
|
|
|
|
for (size_t i = 0; i < it.nplanes; i++, ++it)
|
|
{
|
|
for (int j = 0; j < total; j += blockSize)
|
|
{
|
|
int bsz = std::min(total - j, blockSize);
|
|
func(ptrs[0], ptrs[1], ptrs[2], (uchar*)&isum, bsz, cn);
|
|
count += bsz;
|
|
if (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total))
|
|
{
|
|
result.d += isum;
|
|
isum = 0;
|
|
count = 0;
|
|
}
|
|
ptrs[0] += bsz*esz;
|
|
ptrs[1] += bsz*esz;
|
|
if (ptrs[2])
|
|
ptrs[2] += bsz;
|
|
}
|
|
}
|
|
}
|
|
else if (depth == CV_16F)
|
|
{
|
|
const size_t esz = src1.elemSize();
|
|
const int total = (int)it.size;
|
|
const int blockSize = std::min(total, divUp(512, cn));
|
|
AutoBuffer<float, 1026/*divUp(512,3)*3*2*/> fltbuf(blockSize * cn * 2);
|
|
float* data0 = fltbuf.data();
|
|
float* data1 = fltbuf.data() + blockSize * cn;
|
|
for (size_t i = 0; i < it.nplanes; i++, ++it)
|
|
{
|
|
for (int j = 0; j < total; j += blockSize)
|
|
{
|
|
int bsz = std::min(total - j, blockSize);
|
|
hal::cvt16f32f((const hfloat*)ptrs[0], data0, bsz * cn);
|
|
hal::cvt16f32f((const hfloat*)ptrs[1], data1, bsz * cn);
|
|
func((uchar*)data0, (uchar*)data1, ptrs[2], (uchar*)&result.f, bsz, cn);
|
|
ptrs[0] += bsz*esz;
|
|
ptrs[1] += bsz*esz;
|
|
if (ptrs[2])
|
|
ptrs[2] += bsz;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// generic implementation
|
|
for (size_t i = 0; i < it.nplanes; i++, ++it)
|
|
{
|
|
func(ptrs[0], ptrs[1], ptrs[2], (uchar*)&result, (int)it.size, cn);
|
|
}
|
|
}
|
|
|
|
if( normType == NORM_INF )
|
|
{
|
|
if (depth == CV_64F)
|
|
return result.d;
|
|
else if (depth == CV_32F || depth == CV_16F)
|
|
return result.f;
|
|
else
|
|
return result.u;
|
|
}
|
|
else if( normType == NORM_L2 )
|
|
return std::sqrt(result.d);
|
|
|
|
return result.d;
|
|
}
|
|
|
|
cv::Hamming::ResultType Hamming::operator()( const unsigned char* a, const unsigned char* b, int size ) const
|
|
{
|
|
return cv::hal::normHamming(a, b, size);
|
|
}
|
|
|
|
double PSNR(InputArray _src1, InputArray _src2, double R)
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
//Input arrays must have depth CV_8U
|
|
CV_Assert( _src1.type() == _src2.type() );
|
|
|
|
double diff = std::sqrt(norm(_src1, _src2, NORM_L2SQR)/(_src1.total()*_src1.channels()));
|
|
return 20*log10(R/(diff+DBL_EPSILON));
|
|
}
|
|
|
|
|
|
#ifdef HAVE_OPENCL
|
|
static bool ocl_normalize( InputArray _src, InputOutputArray _dst, InputArray _mask, int dtype,
|
|
double scale, double delta )
|
|
{
|
|
UMat src = _src.getUMat();
|
|
|
|
if( _mask.empty() )
|
|
src.convertTo( _dst, dtype, scale, delta );
|
|
else if (src.channels() <= 4)
|
|
{
|
|
const ocl::Device & dev = ocl::Device::getDefault();
|
|
|
|
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype),
|
|
ddepth = CV_MAT_DEPTH(dtype), wdepth = std::max(CV_32F, std::max(sdepth, ddepth)),
|
|
rowsPerWI = dev.isIntel() ? 4 : 1;
|
|
|
|
float fscale = static_cast<float>(scale), fdelta = static_cast<float>(delta);
|
|
bool haveScale = std::fabs(scale - 1) > DBL_EPSILON,
|
|
haveZeroScale = !(std::fabs(scale) > DBL_EPSILON),
|
|
haveDelta = std::fabs(delta) > DBL_EPSILON,
|
|
doubleSupport = dev.doubleFPConfig() > 0;
|
|
|
|
if (!haveScale && !haveDelta && stype == dtype)
|
|
{
|
|
_src.copyTo(_dst, _mask);
|
|
return true;
|
|
}
|
|
if (haveZeroScale)
|
|
{
|
|
_dst.setTo(Scalar(delta), _mask);
|
|
return true;
|
|
}
|
|
|
|
if ((sdepth == CV_64F || ddepth == CV_64F) && !doubleSupport)
|
|
return false;
|
|
|
|
char cvt[2][50];
|
|
String opts = format("-D srcT=%s -D dstT=%s -D convertToWT=%s -D cn=%d -D rowsPerWI=%d"
|
|
" -D convertToDT=%s -D workT=%s%s%s%s -D srcT1=%s -D dstT1=%s",
|
|
ocl::typeToStr(stype), ocl::typeToStr(dtype),
|
|
ocl::convertTypeStr(sdepth, wdepth, cn, cvt[0], sizeof(cvt[0])), cn,
|
|
rowsPerWI, ocl::convertTypeStr(wdepth, ddepth, cn, cvt[1], sizeof(cvt[1])),
|
|
ocl::typeToStr(CV_MAKE_TYPE(wdepth, cn)),
|
|
doubleSupport ? " -D DOUBLE_SUPPORT" : "",
|
|
haveScale ? " -D HAVE_SCALE" : "",
|
|
haveDelta ? " -D HAVE_DELTA" : "",
|
|
ocl::typeToStr(sdepth), ocl::typeToStr(ddepth));
|
|
|
|
ocl::Kernel k("normalizek", ocl::core::normalize_oclsrc, opts);
|
|
if (k.empty())
|
|
return false;
|
|
|
|
UMat mask = _mask.getUMat(), dst = _dst.getUMat();
|
|
|
|
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src),
|
|
maskarg = ocl::KernelArg::ReadOnlyNoSize(mask),
|
|
dstarg = ocl::KernelArg::ReadWrite(dst);
|
|
|
|
if (haveScale)
|
|
{
|
|
if (haveDelta)
|
|
k.args(srcarg, maskarg, dstarg, fscale, fdelta);
|
|
else
|
|
k.args(srcarg, maskarg, dstarg, fscale);
|
|
}
|
|
else
|
|
{
|
|
if (haveDelta)
|
|
k.args(srcarg, maskarg, dstarg, fdelta);
|
|
else
|
|
k.args(srcarg, maskarg, dstarg);
|
|
}
|
|
|
|
size_t globalsize[2] = { (size_t)src.cols, ((size_t)src.rows + rowsPerWI - 1) / rowsPerWI };
|
|
return k.run(2, globalsize, NULL, false);
|
|
}
|
|
else
|
|
{
|
|
UMat temp;
|
|
src.convertTo( temp, dtype, scale, delta );
|
|
temp.copyTo( _dst, _mask );
|
|
}
|
|
|
|
return true;
|
|
} // ocl_normalize
|
|
#endif // HAVE_OPENCL
|
|
|
|
void normalize(InputArray _src, InputOutputArray _dst, double a, double b,
|
|
int norm_type, int rtype, InputArray _mask)
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
double scale = 1, shift = 0;
|
|
int type = _src.type(), depth = CV_MAT_DEPTH(type);
|
|
|
|
if( rtype < 0 )
|
|
rtype = _dst.fixedType() ? _dst.depth() : depth;
|
|
|
|
if( norm_type == CV_MINMAX )
|
|
{
|
|
double smin = 0, smax = 0;
|
|
double dmin = MIN( a, b ), dmax = MAX( a, b );
|
|
minMaxIdx( _src, &smin, &smax, 0, 0, _mask );
|
|
scale = (dmax - dmin)*(smax - smin > DBL_EPSILON ? 1./(smax - smin) : 0);
|
|
if( rtype == CV_32F )
|
|
{
|
|
scale = (float)scale;
|
|
shift = (float)dmin - (float)(smin*scale);
|
|
}
|
|
else
|
|
shift = dmin - smin*scale;
|
|
}
|
|
else if( norm_type == CV_L2 || norm_type == CV_L1 || norm_type == CV_C )
|
|
{
|
|
scale = norm( _src, norm_type, _mask );
|
|
scale = scale > DBL_EPSILON ? a/scale : 0.;
|
|
shift = 0;
|
|
}
|
|
else
|
|
CV_Error( cv::Error::StsBadArg, "Unknown/unsupported norm type" );
|
|
|
|
CV_OCL_RUN(_dst.isUMat(),
|
|
ocl_normalize(_src, _dst, _mask, rtype, scale, shift))
|
|
|
|
Mat src = _src.getMat();
|
|
if( _mask.empty() )
|
|
src.convertTo( _dst, rtype, scale, shift );
|
|
else
|
|
{
|
|
Mat temp;
|
|
src.convertTo( temp, rtype, scale, shift );
|
|
temp.copyTo( _dst, _mask );
|
|
}
|
|
}
|
|
|
|
} // namespace
|