opencv/modules/gapi/samples/infer_single_roi.cpp
Sergey Ivanov da6344297a
Merge pull request #20901 from sivanov-work:merge_source_unite_perf_mod
G-API: oneVPL - Performance: Add async decode pipeline & add cached pool

* Add async decode pipeline & intro cached pool

* Fix performacne test with checking OPENCV_EXTRA

* Add sip perf test with no VPL

* Fix misprint

* Remove empty line..

* Apply some comments

* Apply some comments

* Make perf test fail if no OPENCV_TEST_DATA_PATH declared
2021-11-10 13:21:51 +00:00

273 lines
9.9 KiB
C++

#include <algorithm>
#include <iostream>
#include <sstream>
#include <opencv2/imgproc.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/gapi.hpp>
#include <opencv2/gapi/core.hpp>
#include <opencv2/gapi/imgproc.hpp>
#include <opencv2/gapi/infer.hpp>
#include <opencv2/gapi/render.hpp>
#include <opencv2/gapi/infer/ie.hpp>
#include <opencv2/gapi/cpu/gcpukernel.hpp>
#include <opencv2/gapi/streaming/cap.hpp>
#include <opencv2/highgui.hpp>
const std::string keys =
"{ h help | | Print this help message }"
"{ input | | Path to the input video file }"
"{ facem | face-detection-adas-0001.xml | Path to OpenVINO IE face detection model (.xml) }"
"{ faced | CPU | Target device for face detection model (e.g. CPU, GPU, VPU, ...) }"
"{ r roi | -1,-1,-1,-1 | Region of interest (ROI) to use for inference. Identified automatically when not set }";
namespace {
std::string weights_path(const std::string &model_path) {
const auto EXT_LEN = 4u;
const auto sz = model_path.size();
CV_Assert(sz > EXT_LEN);
auto ext = model_path.substr(sz - EXT_LEN);
std::transform(ext.begin(), ext.end(), ext.begin(), [](unsigned char c){
return static_cast<unsigned char>(std::tolower(c));
});
CV_Assert(ext == ".xml");
return model_path.substr(0u, sz - EXT_LEN) + ".bin";
}
cv::util::optional<cv::Rect> parse_roi(const std::string &rc) {
cv::Rect rv;
char delim[3];
std::stringstream is(rc);
is >> rv.x >> delim[0] >> rv.y >> delim[1] >> rv.width >> delim[2] >> rv.height;
if (is.bad()) {
return cv::util::optional<cv::Rect>(); // empty value
}
const auto is_delim = [](char c) {
return c == ',';
};
if (!std::all_of(std::begin(delim), std::end(delim), is_delim)) {
return cv::util::optional<cv::Rect>(); // empty value
}
if (rv.x < 0 || rv.y < 0 || rv.width <= 0 || rv.height <= 0) {
return cv::util::optional<cv::Rect>(); // empty value
}
return cv::util::make_optional(std::move(rv));
}
} // namespace
namespace custom {
G_API_NET(FaceDetector, <cv::GMat(cv::GMat)>, "face-detector");
using GDetections = cv::GArray<cv::Rect>;
using GRect = cv::GOpaque<cv::Rect>;
using GSize = cv::GOpaque<cv::Size>;
using GPrims = cv::GArray<cv::gapi::wip::draw::Prim>;
G_API_OP(GetSize, <GSize(cv::GMat)>, "sample.custom.get-size") {
static cv::GOpaqueDesc outMeta(const cv::GMatDesc &) {
return cv::empty_gopaque_desc();
}
};
G_API_OP(LocateROI, <GRect(cv::GMat)>, "sample.custom.locate-roi") {
static cv::GOpaqueDesc outMeta(const cv::GMatDesc &) {
return cv::empty_gopaque_desc();
}
};
G_API_OP(ParseSSD, <GDetections(cv::GMat, GRect, GSize)>, "sample.custom.parse-ssd") {
static cv::GArrayDesc outMeta(const cv::GMatDesc &, const cv::GOpaqueDesc &, const cv::GOpaqueDesc &) {
return cv::empty_array_desc();
}
};
G_API_OP(BBoxes, <GPrims(GDetections, GRect)>, "sample.custom.b-boxes") {
static cv::GArrayDesc outMeta(const cv::GArrayDesc &, const cv::GOpaqueDesc &) {
return cv::empty_array_desc();
}
};
GAPI_OCV_KERNEL(OCVGetSize, GetSize) {
static void run(const cv::Mat &in, cv::Size &out) {
out = {in.cols, in.rows};
}
};
GAPI_OCV_KERNEL(OCVLocateROI, LocateROI) {
// This is the place where we can run extra analytics
// on the input image frame and select the ROI (region
// of interest) where we want to detect our objects (or
// run any other inference).
//
// Currently it doesn't do anything intelligent,
// but only crops the input image to square (this is
// the most convenient aspect ratio for detectors to use)
static void run(const cv::Mat &in_mat, cv::Rect &out_rect) {
// Identify the central point & square size (- some padding)
const auto center = cv::Point{in_mat.cols/2, in_mat.rows/2};
auto sqside = std::min(in_mat.cols, in_mat.rows);
// Now build the central square ROI
out_rect = cv::Rect{ center.x - sqside/2
, center.y - sqside/2
, sqside
, sqside
};
}
};
GAPI_OCV_KERNEL(OCVParseSSD, ParseSSD) {
static void run(const cv::Mat &in_ssd_result,
const cv::Rect &in_roi,
const cv::Size &in_parent_size,
std::vector<cv::Rect> &out_objects) {
const auto &in_ssd_dims = in_ssd_result.size;
CV_Assert(in_ssd_dims.dims() == 4u);
const int MAX_PROPOSALS = in_ssd_dims[2];
const int OBJECT_SIZE = in_ssd_dims[3];
CV_Assert(OBJECT_SIZE == 7); // fixed SSD object size
const cv::Size up_roi = in_roi.size();
const cv::Rect surface({0,0}, in_parent_size);
out_objects.clear();
const float *data = in_ssd_result.ptr<float>();
for (int i = 0; i < MAX_PROPOSALS; i++) {
const float image_id = data[i * OBJECT_SIZE + 0];
const float label = data[i * OBJECT_SIZE + 1];
const float confidence = data[i * OBJECT_SIZE + 2];
const float rc_left = data[i * OBJECT_SIZE + 3];
const float rc_top = data[i * OBJECT_SIZE + 4];
const float rc_right = data[i * OBJECT_SIZE + 5];
const float rc_bottom = data[i * OBJECT_SIZE + 6];
(void) label; // unused
if (image_id < 0.f) {
break; // marks end-of-detections
}
if (confidence < 0.5f) {
continue; // skip objects with low confidence
}
// map relative coordinates to the original image scale
// taking the ROI into account
cv::Rect rc;
rc.x = static_cast<int>(rc_left * up_roi.width);
rc.y = static_cast<int>(rc_top * up_roi.height);
rc.width = static_cast<int>(rc_right * up_roi.width) - rc.x;
rc.height = static_cast<int>(rc_bottom * up_roi.height) - rc.y;
rc.x += in_roi.x;
rc.y += in_roi.y;
out_objects.emplace_back(rc & surface);
}
}
};
GAPI_OCV_KERNEL(OCVBBoxes, BBoxes) {
// This kernel converts the rectangles into G-API's
// rendering primitives
static void run(const std::vector<cv::Rect> &in_face_rcs,
const cv::Rect &in_roi,
std::vector<cv::gapi::wip::draw::Prim> &out_prims) {
out_prims.clear();
const auto cvt = [](const cv::Rect &rc, const cv::Scalar &clr) {
return cv::gapi::wip::draw::Rect(rc, clr, 2);
};
out_prims.emplace_back(cvt(in_roi, CV_RGB(0,255,255))); // cyan
for (auto &&rc : in_face_rcs) {
out_prims.emplace_back(cvt(rc, CV_RGB(0,255,0))); // green
}
}
};
} // namespace custom
int main(int argc, char *argv[])
{
cv::CommandLineParser cmd(argc, argv, keys);
if (cmd.has("help")) {
cmd.printMessage();
return 0;
}
// Prepare parameters first
const std::string input = cmd.get<std::string>("input");
const auto opt_roi = parse_roi(cmd.get<std::string>("roi"));
const auto face_model_path = cmd.get<std::string>("facem");
auto face_net = cv::gapi::ie::Params<custom::FaceDetector> {
face_model_path, // path to topology IR
weights_path(face_model_path), // path to weights
cmd.get<std::string>("faced"), // device specifier
};
auto kernels = cv::gapi::kernels
< custom::OCVGetSize
, custom::OCVLocateROI
, custom::OCVParseSSD
, custom::OCVBBoxes>();
auto networks = cv::gapi::networks(face_net);
// Now build the graph. The graph structure may vary
// pased on the input parameters
cv::GStreamingCompiled pipeline;
auto inputs = cv::gin(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input));
if (opt_roi.has_value()) {
// Use the value provided by user
std::cout << "Will run inference for static region "
<< opt_roi.value()
<< " only"
<< std::endl;
cv::GMat in;
cv::GOpaque<cv::Rect> in_roi;
auto blob = cv::gapi::infer<custom::FaceDetector>(in_roi, in);
auto rcs = custom::ParseSSD::on(blob, in_roi, custom::GetSize::on(in));
auto out = cv::gapi::wip::draw::render3ch(in, custom::BBoxes::on(rcs, in_roi));
pipeline = cv::GComputation(cv::GIn(in, in_roi), cv::GOut(out))
.compileStreaming(cv::compile_args(kernels, networks));
// Since the ROI to detect is manual, make it part of the input vector
inputs.push_back(cv::gin(opt_roi.value())[0]);
} else {
// Automatically detect ROI to infer. Make it output parameter
std::cout << "ROI is not set or invalid. Locating it automatically"
<< std::endl;
cv::GMat in;
cv::GOpaque<cv::Rect> roi = custom::LocateROI::on(in);
auto blob = cv::gapi::infer<custom::FaceDetector>(roi, in);
auto rcs = custom::ParseSSD::on(blob, roi, custom::GetSize::on(in));
auto out = cv::gapi::wip::draw::render3ch(in, custom::BBoxes::on(rcs, roi));
pipeline = cv::GComputation(cv::GIn(in), cv::GOut(out))
.compileStreaming(cv::compile_args(kernels, networks));
}
// The execution part
pipeline.setSource(std::move(inputs));
pipeline.start();
cv::Mat out;
int framesCount = 0;
cv::TickMeter t;
t.start();
while (pipeline.pull(cv::gout(out))) {
cv::imshow("Out", out);
cv::waitKey(1);
framesCount++;
}
t.stop();
std::cout << "Elapsed time: " << t.getTimeSec() << std::endl;
std::cout << "FPS: " << framesCount / (t.getTimeSec() ? t.getTimeSec() : 1) << std::endl;
std::cout << "framesCount: " << framesCount << std::endl;
return 0;
}