opencv/samples/dnn/tf_text_graph_ssd.py
Dmitry Kurtaev c7cf8fb35c Import SSDs from TensorFlow by training config (#12188)
* Remove TensorFlow and protobuf dependencies from object detection scripts

* Create text graphs for TensorFlow object detection networks from sample
2018-09-03 17:08:40 +03:00

278 lines
11 KiB
Python

# This file is a part of OpenCV project.
# It is a subject to the license terms in the LICENSE file found in the top-level directory
# of this distribution and at http://opencv.org/license.html.
#
# Copyright (C) 2018, Intel Corporation, all rights reserved.
# Third party copyrights are property of their respective owners.
#
# Use this script to get the text graph representation (.pbtxt) of SSD-based
# deep learning network trained in TensorFlow Object Detection API.
# Then you can import it with a binary frozen graph (.pb) using readNetFromTensorflow() function.
# See details and examples on the following wiki page: https://github.com/opencv/opencv/wiki/TensorFlow-Object-Detection-API
import argparse
from math import sqrt
import cv2 as cv
from tf_text_graph_common import *
def createSSDGraph(modelPath, configPath, outputPath):
# Nodes that should be kept.
keepOps = ['Conv2D', 'BiasAdd', 'Add', 'Relu6', 'Placeholder', 'FusedBatchNorm',
'DepthwiseConv2dNative', 'ConcatV2', 'Mul', 'MaxPool', 'AvgPool', 'Identity',
'Sub']
# Node with which prefixes should be removed
prefixesToRemove = ('MultipleGridAnchorGenerator/', 'Postprocessor/', 'Preprocessor/map')
# Load a config file.
config = readTextMessage(configPath)
config = config['model'][0]['ssd'][0]
num_classes = int(config['num_classes'][0])
ssd_anchor_generator = config['anchor_generator'][0]['ssd_anchor_generator'][0]
min_scale = float(ssd_anchor_generator['min_scale'][0])
max_scale = float(ssd_anchor_generator['max_scale'][0])
num_layers = int(ssd_anchor_generator['num_layers'][0])
aspect_ratios = [float(ar) for ar in ssd_anchor_generator['aspect_ratios']]
reduce_boxes_in_lowest_layer = True
if 'reduce_boxes_in_lowest_layer' in ssd_anchor_generator:
reduce_boxes_in_lowest_layer = ssd_anchor_generator['reduce_boxes_in_lowest_layer'][0] == 'true'
fixed_shape_resizer = config['image_resizer'][0]['fixed_shape_resizer'][0]
image_width = int(fixed_shape_resizer['width'][0])
image_height = int(fixed_shape_resizer['height'][0])
box_predictor = 'convolutional' if 'convolutional_box_predictor' in config['box_predictor'][0] else 'weight_shared_convolutional'
print('Number of classes: %d' % num_classes)
print('Number of layers: %d' % num_layers)
print('Scale: [%f-%f]' % (min_scale, max_scale))
print('Aspect ratios: %s' % str(aspect_ratios))
print('Reduce boxes in the lowest layer: %s' % str(reduce_boxes_in_lowest_layer))
print('box predictor: %s' % box_predictor)
print('Input image size: %dx%d' % (image_width, image_height))
# Read the graph.
cv.dnn.writeTextGraph(modelPath, outputPath)
graph_def = parseTextGraph(outputPath)
inpNames = ['image_tensor']
outNames = ['num_detections', 'detection_scores', 'detection_boxes', 'detection_classes']
def getUnconnectedNodes():
unconnected = []
for node in graph_def.node:
unconnected.append(node.name)
for inp in node.input:
if inp in unconnected:
unconnected.remove(inp)
return unconnected
# Detect unfused batch normalization nodes and fuse them.
def fuse_batch_normalization():
# Add_0 <-- moving_variance, add_y
# Rsqrt <-- Add_0
# Mul_0 <-- Rsqrt, gamma
# Mul_1 <-- input, Mul_0
# Mul_2 <-- moving_mean, Mul_0
# Sub_0 <-- beta, Mul_2
# Add_1 <-- Mul_1, Sub_0
nodesMap = {node.name: node for node in graph_def.node}
subgraph = ['Add',
['Mul', 'input', ['Mul', ['Rsqrt', ['Add', 'moving_variance', 'add_y']], 'gamma']],
['Sub', 'beta', ['Mul', 'moving_mean', 'Mul_0']]]
def checkSubgraph(node, targetNode, inputs, fusedNodes):
op = targetNode[0]
if node.op == op and (len(node.input) >= len(targetNode) - 1):
fusedNodes.append(node)
for i, inpOp in enumerate(targetNode[1:]):
if isinstance(inpOp, list):
if not node.input[i] in nodesMap or \
not checkSubgraph(nodesMap[node.input[i]], inpOp, inputs, fusedNodes):
return False
else:
inputs[inpOp] = node.input[i]
return True
else:
return False
nodesToRemove = []
for node in graph_def.node:
inputs = {}
fusedNodes = []
if checkSubgraph(node, subgraph, inputs, fusedNodes):
name = node.name
node.Clear()
node.name = name
node.op = 'FusedBatchNorm'
node.input.append(inputs['input'])
node.input.append(inputs['gamma'])
node.input.append(inputs['beta'])
node.input.append(inputs['moving_mean'])
node.input.append(inputs['moving_variance'])
node.addAttr('epsilon', 0.001)
nodesToRemove += fusedNodes[1:]
for node in nodesToRemove:
graph_def.node.remove(node)
fuse_batch_normalization()
removeIdentity(graph_def)
def to_remove(name, op):
return (not op in keepOps) or name.startswith(prefixesToRemove)
removeUnusedNodesAndAttrs(to_remove, graph_def)
# Connect input node to the first layer
assert(graph_def.node[0].op == 'Placeholder')
# assert(graph_def.node[1].op == 'Conv2D')
weights = graph_def.node[1].input[0]
for i in range(len(graph_def.node[1].input)):
graph_def.node[1].input.pop()
graph_def.node[1].input.append(graph_def.node[0].name)
graph_def.node[1].input.append(weights)
# Create SSD postprocessing head ###############################################
# Concatenate predictions of classes, predictions of bounding boxes and proposals.
def addConcatNode(name, inputs, axisNodeName):
concat = NodeDef()
concat.name = name
concat.op = 'ConcatV2'
for inp in inputs:
concat.input.append(inp)
concat.input.append(axisNodeName)
graph_def.node.extend([concat])
addConstNode('concat/axis_flatten', [-1], graph_def)
addConstNode('PriorBox/concat/axis', [-2], graph_def)
for label in ['ClassPredictor', 'BoxEncodingPredictor' if box_predictor is 'convolutional' else 'BoxPredictor']:
concatInputs = []
for i in range(num_layers):
# Flatten predictions
flatten = NodeDef()
if box_predictor is 'convolutional':
inpName = 'BoxPredictor_%d/%s/BiasAdd' % (i, label)
else:
if i == 0:
inpName = 'WeightSharedConvolutionalBoxPredictor/%s/BiasAdd' % label
else:
inpName = 'WeightSharedConvolutionalBoxPredictor_%d/%s/BiasAdd' % (i, label)
flatten.input.append(inpName)
flatten.name = inpName + '/Flatten'
flatten.op = 'Flatten'
concatInputs.append(flatten.name)
graph_def.node.extend([flatten])
addConcatNode('%s/concat' % label, concatInputs, 'concat/axis_flatten')
idx = 0
for node in graph_def.node:
if node.name == ('BoxPredictor_%d/BoxEncodingPredictor/Conv2D' % idx) or \
node.name == ('WeightSharedConvolutionalBoxPredictor_%d/BoxPredictor/Conv2D' % idx) or \
node.name == 'WeightSharedConvolutionalBoxPredictor/BoxPredictor/Conv2D':
node.addAttr('loc_pred_transposed', True)
idx += 1
assert(idx == num_layers)
# Add layers that generate anchors (bounding boxes proposals).
scales = [min_scale + (max_scale - min_scale) * i / (num_layers - 1)
for i in range(num_layers)] + [1.0]
priorBoxes = []
for i in range(num_layers):
priorBox = NodeDef()
priorBox.name = 'PriorBox_%d' % i
priorBox.op = 'PriorBox'
if box_predictor is 'convolutional':
priorBox.input.append('BoxPredictor_%d/BoxEncodingPredictor/BiasAdd' % i)
else:
if i == 0:
priorBox.input.append('WeightSharedConvolutionalBoxPredictor/BoxPredictor/Conv2D')
else:
priorBox.input.append('WeightSharedConvolutionalBoxPredictor_%d/BoxPredictor/BiasAdd' % i)
priorBox.input.append(graph_def.node[0].name) # image_tensor
priorBox.addAttr('flip', False)
priorBox.addAttr('clip', False)
if i == 0 and reduce_boxes_in_lowest_layer:
widths = [0.1, min_scale * sqrt(2.0), min_scale * sqrt(0.5)]
heights = [0.1, min_scale / sqrt(2.0), min_scale / sqrt(0.5)]
else:
widths = [scales[i] * sqrt(ar) for ar in aspect_ratios]
heights = [scales[i] / sqrt(ar) for ar in aspect_ratios]
widths += [sqrt(scales[i] * scales[i + 1])]
heights += [sqrt(scales[i] * scales[i + 1])]
widths = [w * image_width for w in widths]
heights = [h * image_height for h in heights]
priorBox.addAttr('width', widths)
priorBox.addAttr('height', heights)
priorBox.addAttr('variance', [0.1, 0.1, 0.2, 0.2])
graph_def.node.extend([priorBox])
priorBoxes.append(priorBox.name)
addConcatNode('PriorBox/concat', priorBoxes, 'concat/axis_flatten')
# Sigmoid for classes predictions and DetectionOutput layer
sigmoid = NodeDef()
sigmoid.name = 'ClassPredictor/concat/sigmoid'
sigmoid.op = 'Sigmoid'
sigmoid.input.append('ClassPredictor/concat')
graph_def.node.extend([sigmoid])
detectionOut = NodeDef()
detectionOut.name = 'detection_out'
detectionOut.op = 'DetectionOutput'
if box_predictor == 'convolutional':
detectionOut.input.append('BoxEncodingPredictor/concat')
else:
detectionOut.input.append('BoxPredictor/concat')
detectionOut.input.append(sigmoid.name)
detectionOut.input.append('PriorBox/concat')
detectionOut.addAttr('num_classes', num_classes + 1)
detectionOut.addAttr('share_location', True)
detectionOut.addAttr('background_label_id', 0)
detectionOut.addAttr('nms_threshold', 0.6)
detectionOut.addAttr('top_k', 100)
detectionOut.addAttr('code_type', "CENTER_SIZE")
detectionOut.addAttr('keep_top_k', 100)
detectionOut.addAttr('confidence_threshold', 0.01)
graph_def.node.extend([detectionOut])
while True:
unconnectedNodes = getUnconnectedNodes()
unconnectedNodes.remove(detectionOut.name)
if not unconnectedNodes:
break
for name in unconnectedNodes:
for i in range(len(graph_def.node)):
if graph_def.node[i].name == name:
del graph_def.node[i]
break
# Save as text.
graph_def.save(outputPath)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Run this script to get a text graph of '
'SSD model from TensorFlow Object Detection API. '
'Then pass it with .pb file to cv::dnn::readNetFromTensorflow function.')
parser.add_argument('--input', required=True, help='Path to frozen TensorFlow graph.')
parser.add_argument('--output', required=True, help='Path to output text graph.')
parser.add_argument('--config', required=True, help='Path to a *.config file is used for training.')
args = parser.parse_args()
createSSDGraph(args.input, args.config, args.output)