mirror of
https://github.com/opencv/opencv.git
synced 2025-06-11 20:09:23 +08:00
184 lines
6.5 KiB
Common Lisp
184 lines
6.5 KiB
Common Lisp
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
|
// Copyright (c) 2016-2017 Fabian David Tschopp, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#define CONCAT(A,B) A##_##B
|
|
#define TEMPLATE(name,type) CONCAT(name,type)
|
|
|
|
#if defined(cl_khr_fp16)
|
|
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
|
#endif
|
|
|
|
#if defined KERNEL_MAX_POOL
|
|
|
|
__kernel void
|
|
#ifdef HAVE_MASK
|
|
TEMPLATE(max_pool_forward_mask, Dtype)
|
|
#else
|
|
TEMPLATE(max_pool_forward, Dtype)
|
|
#endif
|
|
(
|
|
const int nthreads, __global const Dtype* bottom_data,
|
|
const int channels, const int height, const int width,
|
|
const int pooled_height, const int pooled_width,
|
|
__global Dtype* top_data
|
|
#ifdef HAVE_MASK
|
|
, __global Dtype* mask
|
|
#endif
|
|
)
|
|
{
|
|
for (int index = get_global_id(0); index < nthreads;
|
|
index += get_global_size(0))
|
|
{
|
|
const int pw = index % pooled_width;
|
|
const int ph = (index / pooled_width) % pooled_height;
|
|
const int c = (index / pooled_width / pooled_height) % channels;
|
|
const int n = index / pooled_width / pooled_height / channels;
|
|
int hstart = ph * STRIDE_H - PAD_H;
|
|
int wstart = pw * STRIDE_W - PAD_W;
|
|
const int hend = min(hstart + KERNEL_H, height);
|
|
const int wend = min(wstart + KERNEL_W, width);
|
|
hstart = max(hstart, (int)0);
|
|
wstart = max(wstart, (int)0);
|
|
Dtype maxval = -FLT_MAX;
|
|
int maxidx = -1;
|
|
__global const Dtype* bottom_slice = bottom_data
|
|
+ (n * channels + c) * height * width;
|
|
for (int h = hstart; h < hend; ++h) {
|
|
for (int w = wstart; w < wend; ++w) {
|
|
if (bottom_slice[h * width + w] > maxval) {
|
|
maxidx = h * width + w;
|
|
maxval = bottom_slice[maxidx];
|
|
}
|
|
}
|
|
}
|
|
top_data[index] = maxval;
|
|
#ifdef HAVE_MASK
|
|
mask[index] = maxidx;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#elif defined KERNEL_AVE_POOL
|
|
|
|
__kernel void TEMPLATE(ave_pool_forward, Dtype)(
|
|
const int nthreads, __global const Dtype* const bottom_data,
|
|
const int channels, const int height, const int width,
|
|
const int pooled_height, const int pooled_width,
|
|
__global Dtype* top_data)
|
|
{
|
|
for (int index = get_global_id(0); index < nthreads;
|
|
index += get_global_size(0))
|
|
{
|
|
{
|
|
const int pw = index % pooled_width;
|
|
const int ph = (index / pooled_width) % pooled_height;
|
|
const int c = (index / pooled_width / pooled_height) % channels;
|
|
const int n = index / pooled_width / pooled_height / channels;
|
|
int hstart = ph * STRIDE_H - PAD_H;
|
|
int wstart = pw * STRIDE_W - PAD_W;
|
|
int hend = min(hstart + KERNEL_H, height + PAD_H);
|
|
int wend = min(wstart + KERNEL_W, width + PAD_W);
|
|
int pool_size;
|
|
#ifdef AVE_POOL_PADDING_AREA
|
|
pool_size = (hend - hstart) * (wend - wstart);
|
|
hstart = max(hstart, (int)0);
|
|
wstart = max(wstart, (int)0);
|
|
hend = min(hend, height);
|
|
wend = min(wend, width);
|
|
#else
|
|
hstart = max(hstart, (int)0);
|
|
wstart = max(wstart, (int)0);
|
|
hend = min(hend, height);
|
|
wend = min(wend, width);
|
|
pool_size = (hend - hstart) * (wend - wstart);
|
|
#endif
|
|
Dtype aveval = 0;
|
|
__global const Dtype* bottom_slice = bottom_data
|
|
+ (n * channels + c) * height * width;
|
|
for (int h = hstart; h < hend; ++h) {
|
|
for (int w = wstart; w < wend; ++w) {
|
|
aveval += bottom_slice[h * width + w];
|
|
}
|
|
}
|
|
top_data[index] = aveval / pool_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
#elif defined KERNEL_STO_POOL
|
|
|
|
__kernel void TEMPLATE(sto_pool_forward_test,Dtype)(
|
|
const int nthreads, __global const Dtype* const bottom_data,
|
|
const int channels, const int height, const int width,
|
|
const int pooled_height, const int pooled_width,
|
|
__global Dtype* top_data)
|
|
{
|
|
for (int index = get_global_id(0); index < nthreads;
|
|
index += get_global_size(0))
|
|
{
|
|
const int pw = index % pooled_width;
|
|
const int ph = (index / pooled_width) % pooled_height;
|
|
const int c = (index / pooled_width / pooled_height) % channels;
|
|
const int n = index / pooled_width / pooled_height / channels;
|
|
const int hstart = ph * STRIDE_H;
|
|
const int hend = min(hstart + KERNEL_H, height);
|
|
const int wstart = pw * STRIDE_W;
|
|
const int wend = min(wstart + KERNEL_W, width);
|
|
// We set cumsum to be 0 to avoid divide-by-zero problems
|
|
Dtype cumsum = FLT_MIN;
|
|
Dtype cumvalues = 0.;
|
|
__global const Dtype* bottom_slice = bottom_data
|
|
+ (n * channels + c) * height * width;
|
|
// First pass: get sum
|
|
for (int h = hstart; h < hend; ++h) {
|
|
for (int w = wstart; w < wend; ++w) {
|
|
Dtype v = bottom_slice[h * width + w];
|
|
cumsum += v;
|
|
cumvalues += v * v;
|
|
}
|
|
}
|
|
top_data[index] = cumvalues / cumsum;
|
|
}
|
|
}
|
|
|
|
#endif // KERNEL_*
|