mirror of
https://github.com/opencv/opencv.git
synced 2025-01-22 17:43:12 +08:00
4ba33fa1ed
This reverts commit ab25fe9e37
.
209 lines
5.2 KiB
C++
209 lines
5.2 KiB
C++
#include "perf_precomp.hpp"
|
|
|
|
using namespace std;
|
|
using namespace testing;
|
|
|
|
#define GPU_DENOISING_IMAGE_SIZES testing::Values(perf::szVGA, perf::szXGA, perf::sz720p, perf::sz1080p)
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// BilateralFilter
|
|
|
|
DEF_PARAM_TEST(Sz_Depth_Cn_KernelSz, cv::Size, MatDepth, MatCn, int);
|
|
|
|
PERF_TEST_P(Sz_Depth_Cn_KernelSz, Denoising_BilateralFilter,
|
|
Combine(GPU_DENOISING_IMAGE_SIZES, Values(CV_8U, CV_32F), GPU_CHANNELS_1_3, Values(3, 5, 9)))
|
|
{
|
|
declare.time(60.0);
|
|
|
|
cv::Size size = GET_PARAM(0);
|
|
int depth = GET_PARAM(1);
|
|
int channels = GET_PARAM(2);
|
|
int kernel_size = GET_PARAM(3);
|
|
|
|
float sigma_color = 7;
|
|
float sigma_spatial = 5;
|
|
int borderMode = cv::BORDER_REFLECT101;
|
|
|
|
int type = CV_MAKE_TYPE(depth, channels);
|
|
|
|
cv::Mat src(size, type);
|
|
fillRandom(src);
|
|
|
|
if (PERF_RUN_GPU())
|
|
{
|
|
cv::gpu::GpuMat d_src(src);
|
|
cv::gpu::GpuMat d_dst;
|
|
|
|
cv::gpu::bilateralFilter(d_src, d_dst, kernel_size, sigma_color, sigma_spatial, borderMode);
|
|
|
|
TEST_CYCLE()
|
|
{
|
|
cv::gpu::bilateralFilter(d_src, d_dst, kernel_size, sigma_color, sigma_spatial, borderMode);
|
|
}
|
|
|
|
GPU_SANITY_CHECK(d_dst);
|
|
}
|
|
else
|
|
{
|
|
cv::Mat dst;
|
|
|
|
cv::bilateralFilter(src, dst, kernel_size, sigma_color, sigma_spatial, borderMode);
|
|
|
|
TEST_CYCLE()
|
|
{
|
|
cv::bilateralFilter(src, dst, kernel_size, sigma_color, sigma_spatial, borderMode);
|
|
}
|
|
|
|
CPU_SANITY_CHECK(dst);
|
|
}
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// nonLocalMeans
|
|
|
|
DEF_PARAM_TEST(Sz_Depth_Cn_WinSz_BlockSz, cv::Size, MatDepth, MatCn, int, int);
|
|
|
|
PERF_TEST_P(Sz_Depth_Cn_WinSz_BlockSz, Denoising_NonLocalMeans,
|
|
Combine(GPU_DENOISING_IMAGE_SIZES, Values<MatDepth>(CV_8U), GPU_CHANNELS_1_3, Values(21), Values(5, 7)))
|
|
{
|
|
declare.time(60.0);
|
|
|
|
cv::Size size = GET_PARAM(0);
|
|
int depth = GET_PARAM(1);
|
|
int channels = GET_PARAM(2);
|
|
|
|
int search_widow_size = GET_PARAM(3);
|
|
int block_size = GET_PARAM(4);
|
|
|
|
float h = 10;
|
|
int borderMode = cv::BORDER_REFLECT101;
|
|
|
|
int type = CV_MAKE_TYPE(depth, channels);
|
|
|
|
cv::Mat src(size, type);
|
|
fillRandom(src);
|
|
|
|
if (PERF_RUN_GPU())
|
|
{
|
|
cv::gpu::GpuMat d_src(src);
|
|
cv::gpu::GpuMat d_dst;
|
|
|
|
cv::gpu::nonLocalMeans(d_src, d_dst, h, search_widow_size, block_size, borderMode);
|
|
|
|
TEST_CYCLE()
|
|
{
|
|
cv::gpu::nonLocalMeans(d_src, d_dst, h, search_widow_size, block_size, borderMode);
|
|
}
|
|
|
|
GPU_SANITY_CHECK(d_dst);
|
|
}
|
|
else
|
|
{
|
|
FAIL() << "No such CPU implementation analogy";
|
|
}
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// fastNonLocalMeans
|
|
|
|
DEF_PARAM_TEST(Sz_Depth_Cn_WinSz_BlockSz, cv::Size, MatDepth, MatCn, int, int);
|
|
|
|
PERF_TEST_P(Sz_Depth_Cn_WinSz_BlockSz, Denoising_FastNonLocalMeans,
|
|
Combine(GPU_DENOISING_IMAGE_SIZES, Values<MatDepth>(CV_8U), GPU_CHANNELS_1_3, Values(21), Values(7)))
|
|
{
|
|
declare.time(150.0);
|
|
|
|
cv::Size size = GET_PARAM(0);
|
|
int depth = GET_PARAM(1);
|
|
|
|
int search_widow_size = GET_PARAM(2);
|
|
int block_size = GET_PARAM(3);
|
|
|
|
float h = 10;
|
|
int type = CV_MAKE_TYPE(depth, 1);
|
|
|
|
cv::Mat src(size, type);
|
|
fillRandom(src);
|
|
|
|
if (PERF_RUN_GPU())
|
|
{
|
|
cv::gpu::GpuMat d_src(src);
|
|
cv::gpu::GpuMat d_dst;
|
|
cv::gpu::FastNonLocalMeansDenoising fnlmd;
|
|
|
|
fnlmd.simpleMethod(d_src, d_dst, h, search_widow_size, block_size);
|
|
|
|
TEST_CYCLE()
|
|
{
|
|
fnlmd.simpleMethod(d_src, d_dst, h, search_widow_size, block_size);
|
|
}
|
|
|
|
GPU_SANITY_CHECK(d_dst);
|
|
}
|
|
else
|
|
{
|
|
cv::Mat dst;
|
|
cv::fastNlMeansDenoising(src, dst, h, block_size, search_widow_size);
|
|
|
|
TEST_CYCLE()
|
|
{
|
|
cv::fastNlMeansDenoising(src, dst, h, block_size, search_widow_size);
|
|
}
|
|
|
|
CPU_SANITY_CHECK(dst);
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// fastNonLocalMeans (colored)
|
|
|
|
DEF_PARAM_TEST(Sz_Depth_WinSz_BlockSz, cv::Size, MatDepth, int, int);
|
|
|
|
PERF_TEST_P(Sz_Depth_WinSz_BlockSz, Denoising_FastNonLocalMeansColored,
|
|
Combine(GPU_DENOISING_IMAGE_SIZES, Values<MatDepth>(CV_8U), Values(21), Values(7)))
|
|
{
|
|
declare.time(350.0);
|
|
|
|
cv::Size size = GET_PARAM(0);
|
|
int depth = GET_PARAM(1);
|
|
|
|
int search_widow_size = GET_PARAM(2);
|
|
int block_size = GET_PARAM(3);
|
|
|
|
float h = 10;
|
|
int type = CV_MAKE_TYPE(depth, 3);
|
|
|
|
cv::Mat src(size, type);
|
|
fillRandom(src);
|
|
|
|
if (PERF_RUN_GPU())
|
|
{
|
|
cv::gpu::GpuMat d_src(src);
|
|
cv::gpu::GpuMat d_dst;
|
|
cv::gpu::FastNonLocalMeansDenoising fnlmd;
|
|
|
|
fnlmd.labMethod(d_src, d_dst, h, h, search_widow_size, block_size);
|
|
|
|
TEST_CYCLE()
|
|
{
|
|
fnlmd.labMethod(d_src, d_dst, h, h, search_widow_size, block_size);
|
|
}
|
|
|
|
GPU_SANITY_CHECK(d_dst);
|
|
}
|
|
else
|
|
{
|
|
cv::Mat dst;
|
|
cv::fastNlMeansDenoisingColored(src, dst, h, h, block_size, search_widow_size);
|
|
|
|
TEST_CYCLE()
|
|
{
|
|
cv::fastNlMeansDenoisingColored(src, dst, h, h, block_size, search_widow_size);
|
|
}
|
|
|
|
CPU_SANITY_CHECK(dst);
|
|
}
|
|
} |