opencv/modules/cudaimgproc/test/test_histogram.cpp
2020-08-21 23:52:30 +09:00

363 lines
10 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#ifdef HAVE_CUDA
namespace opencv_test { namespace {
///////////////////////////////////////////////////////////////////////////////////////////////////////
// HistEven
PARAM_TEST_CASE(HistEven, cv::cuda::DeviceInfo, cv::Size)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
cv::cuda::setDevice(devInfo.deviceID());
}
};
CUDA_TEST_P(HistEven, Accuracy)
{
cv::Mat src = randomMat(size, CV_8UC1);
int hbins = 30;
float hranges[] = {50.0f, 200.0f};
cv::cuda::GpuMat hist;
cv::cuda::histEven(loadMat(src), hist, hbins, (int) hranges[0], (int) hranges[1]);
cv::Mat hist_gold;
int histSize[] = {hbins};
const float* ranges[] = {hranges};
int channels[] = {0};
cv::calcHist(&src, 1, channels, cv::Mat(), hist_gold, 1, histSize, ranges);
hist_gold = hist_gold.t();
hist_gold.convertTo(hist_gold, CV_32S);
EXPECT_MAT_NEAR(hist_gold, hist, 0.0);
}
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, HistEven, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES));
///////////////////////////////////////////////////////////////////////////////////////////////////////
// CalcHist
PARAM_TEST_CASE(CalcHist, cv::cuda::DeviceInfo, cv::Size)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
cv::cuda::setDevice(devInfo.deviceID());
}
};
CUDA_TEST_P(CalcHist, Accuracy)
{
cv::Mat src = randomMat(size, CV_8UC1);
cv::cuda::GpuMat hist;
cv::cuda::calcHist(loadMat(src), hist);
cv::Mat hist_gold;
const int hbins = 256;
const float hranges[] = {0.0f, 256.0f};
const int histSize[] = {hbins};
const float* ranges[] = {hranges};
const int channels[] = {0};
cv::calcHist(&src, 1, channels, cv::Mat(), hist_gold, 1, histSize, ranges);
hist_gold = hist_gold.reshape(1, 1);
hist_gold.convertTo(hist_gold, CV_32S);
EXPECT_MAT_NEAR(hist_gold, hist, 0.0);
}
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, CalcHist, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES));
PARAM_TEST_CASE(CalcHistWithMask, cv::cuda::DeviceInfo, cv::Size)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
cv::cuda::setDevice(devInfo.deviceID());
}
};
CUDA_TEST_P(CalcHistWithMask, Accuracy)
{
cv::Mat src = randomMat(size, CV_8UC1);
cv::Mat mask = randomMat(size, CV_8UC1);
cv::Mat(mask, cv::Rect(0, 0, size.width / 2, size.height / 2)).setTo(0);
cv::cuda::GpuMat hist;
cv::cuda::calcHist(loadMat(src), loadMat(mask), hist);
cv::Mat hist_gold;
const int hbins = 256;
const float hranges[] = {0.0f, 256.0f};
const int histSize[] = {hbins};
const float* ranges[] = {hranges};
const int channels[] = {0};
cv::calcHist(&src, 1, channels, mask, hist_gold, 1, histSize, ranges);
hist_gold = hist_gold.reshape(1, 1);
hist_gold.convertTo(hist_gold, CV_32S);
EXPECT_MAT_NEAR(hist_gold, hist, 0.0);
}
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, CalcHistWithMask, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES));
///////////////////////////////////////////////////////////////////////////////////////////////////////
// EqualizeHist
PARAM_TEST_CASE(EqualizeHist, cv::cuda::DeviceInfo, cv::Size)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
cv::cuda::setDevice(devInfo.deviceID());
}
};
CUDA_TEST_P(EqualizeHist, Async)
{
cv::Mat src = randomMat(size, CV_8UC1);
cv::cuda::Stream stream;
cv::cuda::GpuMat dst;
cv::cuda::equalizeHist(loadMat(src), dst, stream);
stream.waitForCompletion();
cv::Mat dst_gold;
cv::equalizeHist(src, dst_gold);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
CUDA_TEST_P(EqualizeHist, Accuracy)
{
cv::Mat src = randomMat(size, CV_8UC1);
cv::cuda::GpuMat dst;
cv::cuda::equalizeHist(loadMat(src), dst);
cv::Mat dst_gold;
cv::equalizeHist(src, dst_gold);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, EqualizeHist, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES));
TEST(EqualizeHistIssue, Issue18035)
{
std::vector<std::string> imgPaths;
imgPaths.push_back(std::string(cvtest::TS::ptr()->get_data_path()) + "../cv/shared/3MP.png");
imgPaths.push_back(std::string(cvtest::TS::ptr()->get_data_path()) + "../cv/shared/5MP.png");
imgPaths.push_back(std::string(cvtest::TS::ptr()->get_data_path()) + "../cv/shared/airplane.png");
imgPaths.push_back(std::string(cvtest::TS::ptr()->get_data_path()) + "../cv/shared/baboon.png");
imgPaths.push_back(std::string(cvtest::TS::ptr()->get_data_path()) + "../cv/shared/box.png");
imgPaths.push_back(std::string(cvtest::TS::ptr()->get_data_path()) + "../cv/shared/box_in_scene.png");
imgPaths.push_back(std::string(cvtest::TS::ptr()->get_data_path()) + "../cv/shared/fruits.png");
imgPaths.push_back(std::string(cvtest::TS::ptr()->get_data_path()) + "../cv/shared/fruits_ecc.png");
imgPaths.push_back(std::string(cvtest::TS::ptr()->get_data_path()) + "../cv/shared/graffiti.png");
imgPaths.push_back(std::string(cvtest::TS::ptr()->get_data_path()) + "../cv/shared/lena.png");
for (size_t i = 0; i < imgPaths.size(); ++i)
{
std::string imgPath = imgPaths[i];
cv::Mat src = cv::imread(imgPath, cv::IMREAD_GRAYSCALE);
src = src / 30;
cv::cuda::GpuMat d_src, dst;
d_src.upload(src);
cv::cuda::equalizeHist(d_src, dst);
cv::Mat dst_gold;
cv::equalizeHist(src, dst_gold);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
}
PARAM_TEST_CASE(EqualizeHistExtreme, cv::cuda::DeviceInfo, cv::Size, int)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
int val;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
val = GET_PARAM(2);
cv::cuda::setDevice(devInfo.deviceID());
}
};
CUDA_TEST_P(EqualizeHistExtreme, Case1)
{
cv::Mat src(size, CV_8UC1, val);
cv::cuda::GpuMat dst;
cv::cuda::equalizeHist(loadMat(src), dst);
cv::Mat dst_gold;
cv::equalizeHist(src, dst_gold);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
CUDA_TEST_P(EqualizeHistExtreme, Case2)
{
cv::Mat src = randomMat(size, CV_8UC1, val);
cv::cuda::GpuMat dst;
cv::cuda::equalizeHist(loadMat(src), dst);
cv::Mat dst_gold;
cv::equalizeHist(src, dst_gold);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, EqualizeHistExtreme, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Range(0, 256)));
///////////////////////////////////////////////////////////////////////////////////////////////////////
// CLAHE
namespace
{
IMPLEMENT_PARAM_CLASS(ClipLimit, double)
}
PARAM_TEST_CASE(CLAHE, cv::cuda::DeviceInfo, cv::Size, ClipLimit, MatType)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
double clipLimit;
int type;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
clipLimit = GET_PARAM(2);
type = GET_PARAM(3);
cv::cuda::setDevice(devInfo.deviceID());
}
};
CUDA_TEST_P(CLAHE, Accuracy)
{
cv::Mat src;
if (type == CV_8UC1)
src = randomMat(size, type);
else if (type == CV_16UC1)
src = randomMat(size, type, 0, 65535);
cv::Ptr<cv::cuda::CLAHE> clahe = cv::cuda::createCLAHE(clipLimit);
cv::cuda::GpuMat dst;
clahe->apply(loadMat(src), dst);
cv::Ptr<cv::CLAHE> clahe_gold = cv::createCLAHE(clipLimit);
cv::Mat dst_gold;
clahe_gold->apply(src, dst_gold);
ASSERT_MAT_NEAR(dst_gold, dst, 1.0);
}
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, CLAHE, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(0.0, 5.0, 10.0, 20.0, 40.0),
testing::Values(MatType(CV_8UC1), MatType(CV_16UC1))));
}} // namespace
#endif // HAVE_CUDA