mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
454 lines
12 KiB
C
454 lines
12 KiB
C
/* dsytrs.f -- translated by f2c (version 20061008).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#include "clapack.h"
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static doublereal c_b7 = -1.;
|
|
static integer c__1 = 1;
|
|
static doublereal c_b19 = 1.;
|
|
|
|
/* Subroutine */ int dsytrs_(char *uplo, integer *n, integer *nrhs,
|
|
doublereal *a, integer *lda, integer *ipiv, doublereal *b, integer *
|
|
ldb, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, b_dim1, b_offset, i__1;
|
|
doublereal d__1;
|
|
|
|
/* Local variables */
|
|
integer j, k;
|
|
doublereal ak, bk;
|
|
integer kp;
|
|
doublereal akm1, bkm1;
|
|
extern /* Subroutine */ int dger_(integer *, integer *, doublereal *,
|
|
doublereal *, integer *, doublereal *, integer *, doublereal *,
|
|
integer *);
|
|
doublereal akm1k;
|
|
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
|
|
integer *);
|
|
extern logical lsame_(char *, char *);
|
|
doublereal denom;
|
|
extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
|
|
doublereal *, doublereal *, integer *, doublereal *, integer *,
|
|
doublereal *, doublereal *, integer *), dswap_(integer *,
|
|
doublereal *, integer *, doublereal *, integer *);
|
|
logical upper;
|
|
extern /* Subroutine */ int xerbla_(char *, integer *);
|
|
|
|
|
|
/* -- LAPACK routine (version 3.2) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2006 */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* DSYTRS solves a system of linear equations A*X = B with a real */
|
|
/* symmetric matrix A using the factorization A = U*D*U**T or */
|
|
/* A = L*D*L**T computed by DSYTRF. */
|
|
|
|
/* Arguments */
|
|
/* ========= */
|
|
|
|
/* UPLO (input) CHARACTER*1 */
|
|
/* Specifies whether the details of the factorization are stored */
|
|
/* as an upper or lower triangular matrix. */
|
|
/* = 'U': Upper triangular, form is A = U*D*U**T; */
|
|
/* = 'L': Lower triangular, form is A = L*D*L**T. */
|
|
|
|
/* N (input) INTEGER */
|
|
/* The order of the matrix A. N >= 0. */
|
|
|
|
/* NRHS (input) INTEGER */
|
|
/* The number of right hand sides, i.e., the number of columns */
|
|
/* of the matrix B. NRHS >= 0. */
|
|
|
|
/* A (input) DOUBLE PRECISION array, dimension (LDA,N) */
|
|
/* The block diagonal matrix D and the multipliers used to */
|
|
/* obtain the factor U or L as computed by DSYTRF. */
|
|
|
|
/* LDA (input) INTEGER */
|
|
/* The leading dimension of the array A. LDA >= max(1,N). */
|
|
|
|
/* IPIV (input) INTEGER array, dimension (N) */
|
|
/* Details of the interchanges and the block structure of D */
|
|
/* as determined by DSYTRF. */
|
|
|
|
/* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
|
|
/* On entry, the right hand side matrix B. */
|
|
/* On exit, the solution matrix X. */
|
|
|
|
/* LDB (input) INTEGER */
|
|
/* The leading dimension of the array B. LDB >= max(1,N). */
|
|
|
|
/* INFO (output) INTEGER */
|
|
/* = 0: successful exit */
|
|
/* < 0: if INFO = -i, the i-th argument had an illegal value */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
--ipiv;
|
|
b_dim1 = *ldb;
|
|
b_offset = 1 + b_dim1;
|
|
b -= b_offset;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
upper = lsame_(uplo, "U");
|
|
if (! upper && ! lsame_(uplo, "L")) {
|
|
*info = -1;
|
|
} else if (*n < 0) {
|
|
*info = -2;
|
|
} else if (*nrhs < 0) {
|
|
*info = -3;
|
|
} else if (*lda < max(1,*n)) {
|
|
*info = -5;
|
|
} else if (*ldb < max(1,*n)) {
|
|
*info = -8;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("DSYTRS", &i__1);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*n == 0 || *nrhs == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (upper) {
|
|
|
|
/* Solve A*X = B, where A = U*D*U'. */
|
|
|
|
/* First solve U*D*X = B, overwriting B with X. */
|
|
|
|
/* K is the main loop index, decreasing from N to 1 in steps of */
|
|
/* 1 or 2, depending on the size of the diagonal blocks. */
|
|
|
|
k = *n;
|
|
L10:
|
|
|
|
/* If K < 1, exit from loop. */
|
|
|
|
if (k < 1) {
|
|
goto L30;
|
|
}
|
|
|
|
if (ipiv[k] > 0) {
|
|
|
|
/* 1 x 1 diagonal block */
|
|
|
|
/* Interchange rows K and IPIV(K). */
|
|
|
|
kp = ipiv[k];
|
|
if (kp != k) {
|
|
dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
|
|
}
|
|
|
|
/* Multiply by inv(U(K)), where U(K) is the transformation */
|
|
/* stored in column K of A. */
|
|
|
|
i__1 = k - 1;
|
|
dger_(&i__1, nrhs, &c_b7, &a[k * a_dim1 + 1], &c__1, &b[k +
|
|
b_dim1], ldb, &b[b_dim1 + 1], ldb);
|
|
|
|
/* Multiply by the inverse of the diagonal block. */
|
|
|
|
d__1 = 1. / a[k + k * a_dim1];
|
|
dscal_(nrhs, &d__1, &b[k + b_dim1], ldb);
|
|
--k;
|
|
} else {
|
|
|
|
/* 2 x 2 diagonal block */
|
|
|
|
/* Interchange rows K-1 and -IPIV(K). */
|
|
|
|
kp = -ipiv[k];
|
|
if (kp != k - 1) {
|
|
dswap_(nrhs, &b[k - 1 + b_dim1], ldb, &b[kp + b_dim1], ldb);
|
|
}
|
|
|
|
/* Multiply by inv(U(K)), where U(K) is the transformation */
|
|
/* stored in columns K-1 and K of A. */
|
|
|
|
i__1 = k - 2;
|
|
dger_(&i__1, nrhs, &c_b7, &a[k * a_dim1 + 1], &c__1, &b[k +
|
|
b_dim1], ldb, &b[b_dim1 + 1], ldb);
|
|
i__1 = k - 2;
|
|
dger_(&i__1, nrhs, &c_b7, &a[(k - 1) * a_dim1 + 1], &c__1, &b[k -
|
|
1 + b_dim1], ldb, &b[b_dim1 + 1], ldb);
|
|
|
|
/* Multiply by the inverse of the diagonal block. */
|
|
|
|
akm1k = a[k - 1 + k * a_dim1];
|
|
akm1 = a[k - 1 + (k - 1) * a_dim1] / akm1k;
|
|
ak = a[k + k * a_dim1] / akm1k;
|
|
denom = akm1 * ak - 1.;
|
|
i__1 = *nrhs;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
bkm1 = b[k - 1 + j * b_dim1] / akm1k;
|
|
bk = b[k + j * b_dim1] / akm1k;
|
|
b[k - 1 + j * b_dim1] = (ak * bkm1 - bk) / denom;
|
|
b[k + j * b_dim1] = (akm1 * bk - bkm1) / denom;
|
|
/* L20: */
|
|
}
|
|
k += -2;
|
|
}
|
|
|
|
goto L10;
|
|
L30:
|
|
|
|
/* Next solve U'*X = B, overwriting B with X. */
|
|
|
|
/* K is the main loop index, increasing from 1 to N in steps of */
|
|
/* 1 or 2, depending on the size of the diagonal blocks. */
|
|
|
|
k = 1;
|
|
L40:
|
|
|
|
/* If K > N, exit from loop. */
|
|
|
|
if (k > *n) {
|
|
goto L50;
|
|
}
|
|
|
|
if (ipiv[k] > 0) {
|
|
|
|
/* 1 x 1 diagonal block */
|
|
|
|
/* Multiply by inv(U'(K)), where U(K) is the transformation */
|
|
/* stored in column K of A. */
|
|
|
|
i__1 = k - 1;
|
|
dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[b_offset], ldb, &a[k *
|
|
a_dim1 + 1], &c__1, &c_b19, &b[k + b_dim1], ldb);
|
|
|
|
/* Interchange rows K and IPIV(K). */
|
|
|
|
kp = ipiv[k];
|
|
if (kp != k) {
|
|
dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
|
|
}
|
|
++k;
|
|
} else {
|
|
|
|
/* 2 x 2 diagonal block */
|
|
|
|
/* Multiply by inv(U'(K+1)), where U(K+1) is the transformation */
|
|
/* stored in columns K and K+1 of A. */
|
|
|
|
i__1 = k - 1;
|
|
dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[b_offset], ldb, &a[k *
|
|
a_dim1 + 1], &c__1, &c_b19, &b[k + b_dim1], ldb);
|
|
i__1 = k - 1;
|
|
dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[b_offset], ldb, &a[(k
|
|
+ 1) * a_dim1 + 1], &c__1, &c_b19, &b[k + 1 + b_dim1],
|
|
ldb);
|
|
|
|
/* Interchange rows K and -IPIV(K). */
|
|
|
|
kp = -ipiv[k];
|
|
if (kp != k) {
|
|
dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
|
|
}
|
|
k += 2;
|
|
}
|
|
|
|
goto L40;
|
|
L50:
|
|
|
|
;
|
|
} else {
|
|
|
|
/* Solve A*X = B, where A = L*D*L'. */
|
|
|
|
/* First solve L*D*X = B, overwriting B with X. */
|
|
|
|
/* K is the main loop index, increasing from 1 to N in steps of */
|
|
/* 1 or 2, depending on the size of the diagonal blocks. */
|
|
|
|
k = 1;
|
|
L60:
|
|
|
|
/* If K > N, exit from loop. */
|
|
|
|
if (k > *n) {
|
|
goto L80;
|
|
}
|
|
|
|
if (ipiv[k] > 0) {
|
|
|
|
/* 1 x 1 diagonal block */
|
|
|
|
/* Interchange rows K and IPIV(K). */
|
|
|
|
kp = ipiv[k];
|
|
if (kp != k) {
|
|
dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
|
|
}
|
|
|
|
/* Multiply by inv(L(K)), where L(K) is the transformation */
|
|
/* stored in column K of A. */
|
|
|
|
if (k < *n) {
|
|
i__1 = *n - k;
|
|
dger_(&i__1, nrhs, &c_b7, &a[k + 1 + k * a_dim1], &c__1, &b[k
|
|
+ b_dim1], ldb, &b[k + 1 + b_dim1], ldb);
|
|
}
|
|
|
|
/* Multiply by the inverse of the diagonal block. */
|
|
|
|
d__1 = 1. / a[k + k * a_dim1];
|
|
dscal_(nrhs, &d__1, &b[k + b_dim1], ldb);
|
|
++k;
|
|
} else {
|
|
|
|
/* 2 x 2 diagonal block */
|
|
|
|
/* Interchange rows K+1 and -IPIV(K). */
|
|
|
|
kp = -ipiv[k];
|
|
if (kp != k + 1) {
|
|
dswap_(nrhs, &b[k + 1 + b_dim1], ldb, &b[kp + b_dim1], ldb);
|
|
}
|
|
|
|
/* Multiply by inv(L(K)), where L(K) is the transformation */
|
|
/* stored in columns K and K+1 of A. */
|
|
|
|
if (k < *n - 1) {
|
|
i__1 = *n - k - 1;
|
|
dger_(&i__1, nrhs, &c_b7, &a[k + 2 + k * a_dim1], &c__1, &b[k
|
|
+ b_dim1], ldb, &b[k + 2 + b_dim1], ldb);
|
|
i__1 = *n - k - 1;
|
|
dger_(&i__1, nrhs, &c_b7, &a[k + 2 + (k + 1) * a_dim1], &c__1,
|
|
&b[k + 1 + b_dim1], ldb, &b[k + 2 + b_dim1], ldb);
|
|
}
|
|
|
|
/* Multiply by the inverse of the diagonal block. */
|
|
|
|
akm1k = a[k + 1 + k * a_dim1];
|
|
akm1 = a[k + k * a_dim1] / akm1k;
|
|
ak = a[k + 1 + (k + 1) * a_dim1] / akm1k;
|
|
denom = akm1 * ak - 1.;
|
|
i__1 = *nrhs;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
bkm1 = b[k + j * b_dim1] / akm1k;
|
|
bk = b[k + 1 + j * b_dim1] / akm1k;
|
|
b[k + j * b_dim1] = (ak * bkm1 - bk) / denom;
|
|
b[k + 1 + j * b_dim1] = (akm1 * bk - bkm1) / denom;
|
|
/* L70: */
|
|
}
|
|
k += 2;
|
|
}
|
|
|
|
goto L60;
|
|
L80:
|
|
|
|
/* Next solve L'*X = B, overwriting B with X. */
|
|
|
|
/* K is the main loop index, decreasing from N to 1 in steps of */
|
|
/* 1 or 2, depending on the size of the diagonal blocks. */
|
|
|
|
k = *n;
|
|
L90:
|
|
|
|
/* If K < 1, exit from loop. */
|
|
|
|
if (k < 1) {
|
|
goto L100;
|
|
}
|
|
|
|
if (ipiv[k] > 0) {
|
|
|
|
/* 1 x 1 diagonal block */
|
|
|
|
/* Multiply by inv(L'(K)), where L(K) is the transformation */
|
|
/* stored in column K of A. */
|
|
|
|
if (k < *n) {
|
|
i__1 = *n - k;
|
|
dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[k + 1 + b_dim1],
|
|
ldb, &a[k + 1 + k * a_dim1], &c__1, &c_b19, &b[k +
|
|
b_dim1], ldb);
|
|
}
|
|
|
|
/* Interchange rows K and IPIV(K). */
|
|
|
|
kp = ipiv[k];
|
|
if (kp != k) {
|
|
dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
|
|
}
|
|
--k;
|
|
} else {
|
|
|
|
/* 2 x 2 diagonal block */
|
|
|
|
/* Multiply by inv(L'(K-1)), where L(K-1) is the transformation */
|
|
/* stored in columns K-1 and K of A. */
|
|
|
|
if (k < *n) {
|
|
i__1 = *n - k;
|
|
dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[k + 1 + b_dim1],
|
|
ldb, &a[k + 1 + k * a_dim1], &c__1, &c_b19, &b[k +
|
|
b_dim1], ldb);
|
|
i__1 = *n - k;
|
|
dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[k + 1 + b_dim1],
|
|
ldb, &a[k + 1 + (k - 1) * a_dim1], &c__1, &c_b19, &b[
|
|
k - 1 + b_dim1], ldb);
|
|
}
|
|
|
|
/* Interchange rows K and -IPIV(K). */
|
|
|
|
kp = -ipiv[k];
|
|
if (kp != k) {
|
|
dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
|
|
}
|
|
k += -2;
|
|
}
|
|
|
|
goto L90;
|
|
L100:
|
|
;
|
|
}
|
|
|
|
return 0;
|
|
|
|
/* End of DSYTRS */
|
|
|
|
} /* dsytrs_ */
|