mirror of
https://github.com/opencv/opencv.git
synced 2024-12-05 01:39:13 +08:00
592 lines
20 KiB
C++
592 lines
20 KiB
C++
/***********************************************************************
|
|
* Software License Agreement (BSD License)
|
|
*
|
|
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
|
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
|
*
|
|
* THE BSD LICENSE
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*************************************************************************/
|
|
#ifndef OPENCV_FLANN_AUTOTUNED_INDEX_H_
|
|
#define OPENCV_FLANN_AUTOTUNED_INDEX_H_
|
|
|
|
#include <sstream>
|
|
|
|
#include "general.h"
|
|
#include "nn_index.h"
|
|
#include "ground_truth.h"
|
|
#include "index_testing.h"
|
|
#include "sampling.h"
|
|
#include "kdtree_index.h"
|
|
#include "kdtree_single_index.h"
|
|
#include "kmeans_index.h"
|
|
#include "composite_index.h"
|
|
#include "linear_index.h"
|
|
#include "logger.h"
|
|
|
|
namespace cvflann
|
|
{
|
|
|
|
template<typename Distance>
|
|
NNIndex<Distance>* create_index_by_type(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance);
|
|
|
|
|
|
struct AutotunedIndexParams : public IndexParams
|
|
{
|
|
AutotunedIndexParams(float target_precision = 0.8, float build_weight = 0.01, float memory_weight = 0, float sample_fraction = 0.1)
|
|
{
|
|
(*this)["algorithm"] = FLANN_INDEX_AUTOTUNED;
|
|
// precision desired (used for autotuning, -1 otherwise)
|
|
(*this)["target_precision"] = target_precision;
|
|
// build tree time weighting factor
|
|
(*this)["build_weight"] = build_weight;
|
|
// index memory weighting factor
|
|
(*this)["memory_weight"] = memory_weight;
|
|
// what fraction of the dataset to use for autotuning
|
|
(*this)["sample_fraction"] = sample_fraction;
|
|
}
|
|
};
|
|
|
|
|
|
template <typename Distance>
|
|
class AutotunedIndex : public NNIndex<Distance>
|
|
{
|
|
public:
|
|
typedef typename Distance::ElementType ElementType;
|
|
typedef typename Distance::ResultType DistanceType;
|
|
|
|
AutotunedIndex(const Matrix<ElementType>& inputData, const IndexParams& params = AutotunedIndexParams(), Distance d = Distance()) :
|
|
dataset_(inputData), distance_(d)
|
|
{
|
|
target_precision_ = get_param(params, "target_precision",0.8f);
|
|
build_weight_ = get_param(params,"build_weight", 0.01f);
|
|
memory_weight_ = get_param(params, "memory_weight", 0.0f);
|
|
sample_fraction_ = get_param(params,"sample_fraction", 0.1f);
|
|
bestIndex_ = NULL;
|
|
speedup_ = 0;
|
|
}
|
|
|
|
AutotunedIndex(const AutotunedIndex&);
|
|
AutotunedIndex& operator=(const AutotunedIndex&);
|
|
|
|
virtual ~AutotunedIndex()
|
|
{
|
|
if (bestIndex_ != NULL) {
|
|
delete bestIndex_;
|
|
bestIndex_ = NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Method responsible with building the index.
|
|
*/
|
|
virtual void buildIndex() CV_OVERRIDE
|
|
{
|
|
std::ostringstream stream;
|
|
bestParams_ = estimateBuildParams();
|
|
print_params(bestParams_, stream);
|
|
Logger::info("----------------------------------------------------\n");
|
|
Logger::info("Autotuned parameters:\n");
|
|
Logger::info("%s", stream.str().c_str());
|
|
Logger::info("----------------------------------------------------\n");
|
|
|
|
bestIndex_ = create_index_by_type(dataset_, bestParams_, distance_);
|
|
bestIndex_->buildIndex();
|
|
speedup_ = estimateSearchParams(bestSearchParams_);
|
|
stream.str(std::string());
|
|
print_params(bestSearchParams_, stream);
|
|
Logger::info("----------------------------------------------------\n");
|
|
Logger::info("Search parameters:\n");
|
|
Logger::info("%s", stream.str().c_str());
|
|
Logger::info("----------------------------------------------------\n");
|
|
}
|
|
|
|
/**
|
|
* Saves the index to a stream
|
|
*/
|
|
virtual void saveIndex(FILE* stream) CV_OVERRIDE
|
|
{
|
|
save_value(stream, (int)bestIndex_->getType());
|
|
bestIndex_->saveIndex(stream);
|
|
save_value(stream, get_param<int>(bestSearchParams_, "checks"));
|
|
}
|
|
|
|
/**
|
|
* Loads the index from a stream
|
|
*/
|
|
virtual void loadIndex(FILE* stream) CV_OVERRIDE
|
|
{
|
|
int index_type;
|
|
|
|
load_value(stream, index_type);
|
|
IndexParams params;
|
|
params["algorithm"] = (flann_algorithm_t)index_type;
|
|
bestIndex_ = create_index_by_type<Distance>(dataset_, params, distance_);
|
|
bestIndex_->loadIndex(stream);
|
|
int checks;
|
|
load_value(stream, checks);
|
|
bestSearchParams_["checks"] = checks;
|
|
}
|
|
|
|
/**
|
|
* Method that searches for nearest-neighbors
|
|
*/
|
|
virtual void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) CV_OVERRIDE
|
|
{
|
|
int checks = get_param<int>(searchParams,"checks",FLANN_CHECKS_AUTOTUNED);
|
|
if (checks == FLANN_CHECKS_AUTOTUNED) {
|
|
bestIndex_->findNeighbors(result, vec, bestSearchParams_);
|
|
}
|
|
else {
|
|
bestIndex_->findNeighbors(result, vec, searchParams);
|
|
}
|
|
}
|
|
|
|
|
|
IndexParams getParameters() const CV_OVERRIDE
|
|
{
|
|
return bestIndex_->getParameters();
|
|
}
|
|
|
|
SearchParams getSearchParameters() const
|
|
{
|
|
return bestSearchParams_;
|
|
}
|
|
|
|
float getSpeedup() const
|
|
{
|
|
return speedup_;
|
|
}
|
|
|
|
|
|
/**
|
|
* Number of features in this index.
|
|
*/
|
|
virtual size_t size() const CV_OVERRIDE
|
|
{
|
|
return bestIndex_->size();
|
|
}
|
|
|
|
/**
|
|
* The length of each vector in this index.
|
|
*/
|
|
virtual size_t veclen() const CV_OVERRIDE
|
|
{
|
|
return bestIndex_->veclen();
|
|
}
|
|
|
|
/**
|
|
* The amount of memory (in bytes) this index uses.
|
|
*/
|
|
virtual int usedMemory() const CV_OVERRIDE
|
|
{
|
|
return bestIndex_->usedMemory();
|
|
}
|
|
|
|
/**
|
|
* Algorithm name
|
|
*/
|
|
virtual flann_algorithm_t getType() const CV_OVERRIDE
|
|
{
|
|
return FLANN_INDEX_AUTOTUNED;
|
|
}
|
|
|
|
private:
|
|
|
|
struct CostData
|
|
{
|
|
float searchTimeCost;
|
|
float buildTimeCost;
|
|
float memoryCost;
|
|
float totalCost;
|
|
IndexParams params;
|
|
};
|
|
|
|
void evaluate_kmeans(CostData& cost)
|
|
{
|
|
StartStopTimer t;
|
|
int checks;
|
|
const int nn = 1;
|
|
|
|
Logger::info("KMeansTree using params: max_iterations=%d, branching=%d\n",
|
|
get_param<int>(cost.params,"iterations"),
|
|
get_param<int>(cost.params,"branching"));
|
|
KMeansIndex<Distance> kmeans(sampledDataset_, cost.params, distance_);
|
|
// measure index build time
|
|
t.start();
|
|
kmeans.buildIndex();
|
|
t.stop();
|
|
float buildTime = (float)t.value;
|
|
|
|
// measure search time
|
|
float searchTime = test_index_precision(kmeans, sampledDataset_, testDataset_, gt_matches_, target_precision_, checks, distance_, nn);
|
|
|
|
float datasetMemory = float(sampledDataset_.rows * sampledDataset_.cols * sizeof(float));
|
|
cost.memoryCost = (kmeans.usedMemory() + datasetMemory) / datasetMemory;
|
|
cost.searchTimeCost = searchTime;
|
|
cost.buildTimeCost = buildTime;
|
|
Logger::info("KMeansTree buildTime=%g, searchTime=%g, build_weight=%g\n", buildTime, searchTime, build_weight_);
|
|
}
|
|
|
|
|
|
void evaluate_kdtree(CostData& cost)
|
|
{
|
|
StartStopTimer t;
|
|
int checks;
|
|
const int nn = 1;
|
|
|
|
Logger::info("KDTree using params: trees=%d\n", get_param<int>(cost.params,"trees"));
|
|
KDTreeIndex<Distance> kdtree(sampledDataset_, cost.params, distance_);
|
|
|
|
t.start();
|
|
kdtree.buildIndex();
|
|
t.stop();
|
|
float buildTime = (float)t.value;
|
|
|
|
//measure search time
|
|
float searchTime = test_index_precision(kdtree, sampledDataset_, testDataset_, gt_matches_, target_precision_, checks, distance_, nn);
|
|
|
|
float datasetMemory = float(sampledDataset_.rows * sampledDataset_.cols * sizeof(float));
|
|
cost.memoryCost = (kdtree.usedMemory() + datasetMemory) / datasetMemory;
|
|
cost.searchTimeCost = searchTime;
|
|
cost.buildTimeCost = buildTime;
|
|
Logger::info("KDTree buildTime=%g, searchTime=%g\n", buildTime, searchTime);
|
|
}
|
|
|
|
|
|
// struct KMeansSimpleDownhillFunctor {
|
|
//
|
|
// Autotune& autotuner;
|
|
// KMeansSimpleDownhillFunctor(Autotune& autotuner_) : autotuner(autotuner_) {}
|
|
//
|
|
// float operator()(int* params) {
|
|
//
|
|
// float maxFloat = numeric_limits<float>::max();
|
|
//
|
|
// if (params[0]<2) return maxFloat;
|
|
// if (params[1]<0) return maxFloat;
|
|
//
|
|
// CostData c;
|
|
// c.params["algorithm"] = KMEANS;
|
|
// c.params["centers-init"] = CENTERS_RANDOM;
|
|
// c.params["branching"] = params[0];
|
|
// c.params["max-iterations"] = params[1];
|
|
//
|
|
// autotuner.evaluate_kmeans(c);
|
|
//
|
|
// return c.timeCost;
|
|
//
|
|
// }
|
|
// };
|
|
//
|
|
// struct KDTreeSimpleDownhillFunctor {
|
|
//
|
|
// Autotune& autotuner;
|
|
// KDTreeSimpleDownhillFunctor(Autotune& autotuner_) : autotuner(autotuner_) {}
|
|
//
|
|
// float operator()(int* params) {
|
|
// float maxFloat = numeric_limits<float>::max();
|
|
//
|
|
// if (params[0]<1) return maxFloat;
|
|
//
|
|
// CostData c;
|
|
// c.params["algorithm"] = KDTREE;
|
|
// c.params["trees"] = params[0];
|
|
//
|
|
// autotuner.evaluate_kdtree(c);
|
|
//
|
|
// return c.timeCost;
|
|
//
|
|
// }
|
|
// };
|
|
|
|
|
|
|
|
void optimizeKMeans(std::vector<CostData>& costs)
|
|
{
|
|
Logger::info("KMEANS, Step 1: Exploring parameter space\n");
|
|
|
|
// explore kmeans parameters space using combinations of the parameters below
|
|
int maxIterations[] = { 1, 5, 10, 15 };
|
|
int branchingFactors[] = { 16, 32, 64, 128, 256 };
|
|
|
|
int kmeansParamSpaceSize = FLANN_ARRAY_LEN(maxIterations) * FLANN_ARRAY_LEN(branchingFactors);
|
|
costs.reserve(costs.size() + kmeansParamSpaceSize);
|
|
|
|
// evaluate kmeans for all parameter combinations
|
|
for (size_t i = 0; i < FLANN_ARRAY_LEN(maxIterations); ++i) {
|
|
for (size_t j = 0; j < FLANN_ARRAY_LEN(branchingFactors); ++j) {
|
|
CostData cost;
|
|
cost.params["algorithm"] = FLANN_INDEX_KMEANS;
|
|
cost.params["centers_init"] = FLANN_CENTERS_RANDOM;
|
|
cost.params["iterations"] = maxIterations[i];
|
|
cost.params["branching"] = branchingFactors[j];
|
|
|
|
evaluate_kmeans(cost);
|
|
costs.push_back(cost);
|
|
}
|
|
}
|
|
|
|
// Logger::info("KMEANS, Step 2: simplex-downhill optimization\n");
|
|
//
|
|
// const int n = 2;
|
|
// // choose initial simplex points as the best parameters so far
|
|
// int kmeansNMPoints[n*(n+1)];
|
|
// float kmeansVals[n+1];
|
|
// for (int i=0;i<n+1;++i) {
|
|
// kmeansNMPoints[i*n] = (int)kmeansCosts[i].params["branching"];
|
|
// kmeansNMPoints[i*n+1] = (int)kmeansCosts[i].params["max-iterations"];
|
|
// kmeansVals[i] = kmeansCosts[i].timeCost;
|
|
// }
|
|
// KMeansSimpleDownhillFunctor kmeans_cost_func(*this);
|
|
// // run optimization
|
|
// optimizeSimplexDownhill(kmeansNMPoints,n,kmeans_cost_func,kmeansVals);
|
|
// // store results
|
|
// for (int i=0;i<n+1;++i) {
|
|
// kmeansCosts[i].params["branching"] = kmeansNMPoints[i*2];
|
|
// kmeansCosts[i].params["max-iterations"] = kmeansNMPoints[i*2+1];
|
|
// kmeansCosts[i].timeCost = kmeansVals[i];
|
|
// }
|
|
}
|
|
|
|
|
|
void optimizeKDTree(std::vector<CostData>& costs)
|
|
{
|
|
Logger::info("KD-TREE, Step 1: Exploring parameter space\n");
|
|
|
|
// explore kd-tree parameters space using the parameters below
|
|
int testTrees[] = { 1, 4, 8, 16, 32 };
|
|
|
|
// evaluate kdtree for all parameter combinations
|
|
for (size_t i = 0; i < FLANN_ARRAY_LEN(testTrees); ++i) {
|
|
CostData cost;
|
|
cost.params["algorithm"] = FLANN_INDEX_KDTREE;
|
|
cost.params["trees"] = testTrees[i];
|
|
|
|
evaluate_kdtree(cost);
|
|
costs.push_back(cost);
|
|
}
|
|
|
|
// Logger::info("KD-TREE, Step 2: simplex-downhill optimization\n");
|
|
//
|
|
// const int n = 1;
|
|
// // choose initial simplex points as the best parameters so far
|
|
// int kdtreeNMPoints[n*(n+1)];
|
|
// float kdtreeVals[n+1];
|
|
// for (int i=0;i<n+1;++i) {
|
|
// kdtreeNMPoints[i] = (int)kdtreeCosts[i].params["trees"];
|
|
// kdtreeVals[i] = kdtreeCosts[i].timeCost;
|
|
// }
|
|
// KDTreeSimpleDownhillFunctor kdtree_cost_func(*this);
|
|
// // run optimization
|
|
// optimizeSimplexDownhill(kdtreeNMPoints,n,kdtree_cost_func,kdtreeVals);
|
|
// // store results
|
|
// for (int i=0;i<n+1;++i) {
|
|
// kdtreeCosts[i].params["trees"] = kdtreeNMPoints[i];
|
|
// kdtreeCosts[i].timeCost = kdtreeVals[i];
|
|
// }
|
|
}
|
|
|
|
/**
|
|
* Chooses the best nearest-neighbor algorithm and estimates the optimal
|
|
* parameters to use when building the index (for a given precision).
|
|
* Returns a dictionary with the optimal parameters.
|
|
*/
|
|
IndexParams estimateBuildParams()
|
|
{
|
|
std::vector<CostData> costs;
|
|
|
|
int sampleSize = int(sample_fraction_ * dataset_.rows);
|
|
int testSampleSize = std::min(sampleSize / 10, 1000);
|
|
|
|
Logger::info("Entering autotuning, dataset size: %d, sampleSize: %d, testSampleSize: %d, target precision: %g\n", dataset_.rows, sampleSize, testSampleSize, target_precision_);
|
|
|
|
// For a very small dataset, it makes no sense to build any fancy index, just
|
|
// use linear search
|
|
if (testSampleSize < 10) {
|
|
Logger::info("Choosing linear, dataset too small\n");
|
|
return LinearIndexParams();
|
|
}
|
|
|
|
// We use a fraction of the original dataset to speedup the autotune algorithm
|
|
sampledDataset_ = random_sample(dataset_, sampleSize);
|
|
// We use a cross-validation approach, first we sample a testset from the dataset
|
|
testDataset_ = random_sample(sampledDataset_, testSampleSize, true);
|
|
|
|
// We compute the ground truth using linear search
|
|
Logger::info("Computing ground truth... \n");
|
|
gt_matches_ = Matrix<int>(new int[testDataset_.rows], testDataset_.rows, 1);
|
|
StartStopTimer t;
|
|
t.start();
|
|
compute_ground_truth<Distance>(sampledDataset_, testDataset_, gt_matches_, 0, distance_);
|
|
t.stop();
|
|
|
|
CostData linear_cost;
|
|
linear_cost.searchTimeCost = (float)t.value;
|
|
linear_cost.buildTimeCost = 0;
|
|
linear_cost.memoryCost = 0;
|
|
linear_cost.params["algorithm"] = FLANN_INDEX_LINEAR;
|
|
|
|
costs.push_back(linear_cost);
|
|
|
|
// Start parameter autotune process
|
|
Logger::info("Autotuning parameters...\n");
|
|
|
|
optimizeKMeans(costs);
|
|
optimizeKDTree(costs);
|
|
|
|
float bestTimeCost = costs[0].searchTimeCost;
|
|
for (size_t i = 0; i < costs.size(); ++i) {
|
|
float timeCost = costs[i].buildTimeCost * build_weight_ + costs[i].searchTimeCost;
|
|
if (timeCost < bestTimeCost) {
|
|
bestTimeCost = timeCost;
|
|
}
|
|
}
|
|
|
|
float bestCost = costs[0].searchTimeCost / bestTimeCost;
|
|
IndexParams bestParams = costs[0].params;
|
|
if (bestTimeCost > 0) {
|
|
for (size_t i = 0; i < costs.size(); ++i) {
|
|
float crtCost = (costs[i].buildTimeCost * build_weight_ + costs[i].searchTimeCost) / bestTimeCost +
|
|
memory_weight_ * costs[i].memoryCost;
|
|
if (crtCost < bestCost) {
|
|
bestCost = crtCost;
|
|
bestParams = costs[i].params;
|
|
}
|
|
}
|
|
}
|
|
|
|
delete[] gt_matches_.data;
|
|
delete[] testDataset_.data;
|
|
delete[] sampledDataset_.data;
|
|
|
|
return bestParams;
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* Estimates the search time parameters needed to get the desired precision.
|
|
* Precondition: the index is built
|
|
* Postcondition: the searchParams will have the optimum params set, also the speedup obtained over linear search.
|
|
*/
|
|
float estimateSearchParams(SearchParams& searchParams)
|
|
{
|
|
const int nn = 1;
|
|
const size_t SAMPLE_COUNT = 1000;
|
|
|
|
assert(bestIndex_ != NULL); // must have a valid index
|
|
|
|
float speedup = 0;
|
|
|
|
int samples = (int)std::min(dataset_.rows / 10, SAMPLE_COUNT);
|
|
if (samples > 0) {
|
|
Matrix<ElementType> testDataset = random_sample(dataset_, samples);
|
|
|
|
Logger::info("Computing ground truth\n");
|
|
|
|
// we need to compute the ground truth first
|
|
Matrix<int> gt_matches(new int[testDataset.rows], testDataset.rows, 1);
|
|
StartStopTimer t;
|
|
t.start();
|
|
compute_ground_truth<Distance>(dataset_, testDataset, gt_matches, 1, distance_);
|
|
t.stop();
|
|
float linear = (float)t.value;
|
|
|
|
int checks;
|
|
Logger::info("Estimating number of checks\n");
|
|
|
|
float searchTime;
|
|
float cb_index;
|
|
if (bestIndex_->getType() == FLANN_INDEX_KMEANS) {
|
|
Logger::info("KMeans algorithm, estimating cluster border factor\n");
|
|
KMeansIndex<Distance>* kmeans = (KMeansIndex<Distance>*)bestIndex_;
|
|
float bestSearchTime = -1;
|
|
float best_cb_index = -1;
|
|
int best_checks = -1;
|
|
for (cb_index = 0; cb_index < 1.1f; cb_index += 0.2f) {
|
|
kmeans->set_cb_index(cb_index);
|
|
searchTime = test_index_precision(*kmeans, dataset_, testDataset, gt_matches, target_precision_, checks, distance_, nn, 1);
|
|
if ((searchTime < bestSearchTime) || (bestSearchTime == -1)) {
|
|
bestSearchTime = searchTime;
|
|
best_cb_index = cb_index;
|
|
best_checks = checks;
|
|
}
|
|
}
|
|
searchTime = bestSearchTime;
|
|
cb_index = best_cb_index;
|
|
checks = best_checks;
|
|
|
|
kmeans->set_cb_index(best_cb_index);
|
|
Logger::info("Optimum cb_index: %g\n", cb_index);
|
|
bestParams_["cb_index"] = cb_index;
|
|
}
|
|
else {
|
|
searchTime = test_index_precision(*bestIndex_, dataset_, testDataset, gt_matches, target_precision_, checks, distance_, nn, 1);
|
|
}
|
|
|
|
Logger::info("Required number of checks: %d \n", checks);
|
|
searchParams["checks"] = checks;
|
|
|
|
speedup = linear / searchTime;
|
|
|
|
delete[] gt_matches.data;
|
|
delete[] testDataset.data;
|
|
}
|
|
|
|
return speedup;
|
|
}
|
|
|
|
private:
|
|
NNIndex<Distance>* bestIndex_;
|
|
|
|
IndexParams bestParams_;
|
|
SearchParams bestSearchParams_;
|
|
|
|
Matrix<ElementType> sampledDataset_;
|
|
Matrix<ElementType> testDataset_;
|
|
Matrix<int> gt_matches_;
|
|
|
|
float speedup_;
|
|
|
|
/**
|
|
* The dataset used by this index
|
|
*/
|
|
const Matrix<ElementType> dataset_;
|
|
|
|
/**
|
|
* Index parameters
|
|
*/
|
|
float target_precision_;
|
|
float build_weight_;
|
|
float memory_weight_;
|
|
float sample_fraction_;
|
|
|
|
Distance distance_;
|
|
|
|
|
|
};
|
|
}
|
|
|
|
#endif /* OPENCV_FLANN_AUTOTUNED_INDEX_H_ */
|