opencv/samples/dnn/object_detection.py
Gursimar Singh efbe580ff3
Merge pull request #26486 from gursimarsingh:object_detection_engine_update
Code Fixes and changed post processing based on models.yml in Object Detection Sample #26486

## Major Changes

1. Changes to add findModel support for config file in models like yolov4, yolov4-tiny, yolov3, ssd_caffe, tiny-yolo-voc, ssd_tf and faster_rcnn_tf.
2. Added new model and config download links for ssd_caffe, as previous links were not working.
3. Switched to DNN ENGINE_CLASSIC for non-cpu convig as new engine does not support it.
4. Fixes in python sample related to yolov5 usage.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-12-02 09:05:25 +03:00

415 lines
16 KiB
Python

import cv2 as cv
import argparse
import numpy as np
import sys
import copy
import time
from threading import Thread
import queue
from common import *
from tf_text_graph_common import readTextMessage
from tf_text_graph_ssd import createSSDGraph
from tf_text_graph_faster_rcnn import createFasterRCNNGraph
def help():
print(
'''
Firstly, download required models using `download_models.py` (if not already done). Set environment variable OPENCV_DOWNLOAD_CACHE_DIR to specify where models should be downloaded. Also, point OPENCV_SAMPLES_DATA_PATH to opencv/samples/data.\n"\n
To run:
python object_detection.py model_name(e.g yolov8) --input=path/to/your/input/image/or/video (don't pass --input to use device camera)
Sample command:
python object_detection.py yolov8 --input=path/to/image
Model path can also be specified using --model argument
'''
)
backends = ("default", "openvino", "opencv", "vkcom", "cuda")
targets = ("cpu", "opencl", "opencl_fp16", "ncs2_vpu", "hddl_vpu", "vulkan", "cuda", "cuda_fp16")
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models.yml'),
help='An optional path to file with preprocessing parameters.')
parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.')
parser.add_argument('--out_tf_graph', default='graph.pbtxt',
help='For models from TensorFlow Object Detection API, you may '
'pass a .config file which was used for training through --config '
'argument. This way an additional .pbtxt file with TensorFlow graph will be created.')
parser.add_argument('--thr', type=float, default=0.5, help='Confidence threshold')
parser.add_argument('--nms', type=float, default=0.4, help='Non-maximum suppression threshold')
parser.add_argument('--backend', default="default", type=str, choices=backends,
help="Choose one of computation backends: "
"default: automatically (by default), "
"openvino: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
"opencv: OpenCV implementation, "
"vkcom: VKCOM, "
"cuda: CUDA, "
"webnn: WebNN")
parser.add_argument('--target', default="cpu", type=str, choices=targets,
help="Choose one of target computation devices: "
"cpu: CPU target (by default), "
"opencl: OpenCL, "
"opencl_fp16: OpenCL fp16 (half-float precision), "
"ncs2_vpu: NCS2 VPU, "
"hddl_vpu: HDDL VPU, "
"vulkan: Vulkan, "
"cuda: CUDA, "
"cuda_fp16: CUDA fp16 (half-float preprocess)")
parser.add_argument('--async', type=int, default=0,
dest='use_threads',
help='Choose 0 for synchronous mode and 1 for asynchronous mode')
args, _ = parser.parse_known_args()
add_preproc_args(args.zoo, parser, 'object_detection')
parser = argparse.ArgumentParser(parents=[parser],
description='Use this script to run object detection deep learning networks using OpenCV.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
args = parser.parse_args()
if args.alias is None or hasattr(args, 'help'):
help()
exit(1)
args.model = findModel(args.model, args.sha1)
if args.config is not None:
args.config = findModel(args.config, args.config_sha1)
if args.labels is not None:
args.labels = findFile(args.labels)
# If config specified, try to load it as TensorFlow Object Detection API's pipeline.
config = readTextMessage(args.config)
if 'model' in config:
print('TensorFlow Object Detection API config detected')
if 'ssd' in config['model'][0]:
print('Preparing text graph representation for SSD model: ' + args.out_tf_graph)
createSSDGraph(args.model, args.config, args.out_tf_graph)
args.config = args.out_tf_graph
elif 'faster_rcnn' in config['model'][0]:
print('Preparing text graph representation for Faster-RCNN model: ' + args.out_tf_graph)
createFasterRCNNGraph(args.model, args.config, args.out_tf_graph)
args.config = args.out_tf_graph
# Load names of classes
labels = None
if args.labels:
with open(args.labels, 'rt') as f:
labels = f.read().rstrip('\n').split('\n')
# Load a network
engine = cv.dnn.ENGINE_AUTO
if args.backend != "default" or args.target != "cpu":
engine = cv.dnn.ENGINE_CLASSIC
net = cv.dnn.readNet(args.model, args.config, "", engine)
net.setPreferableBackend(get_backend_id(args.backend))
net.setPreferableTarget(get_target_id(args.target))
outNames = net.getUnconnectedOutLayersNames()
confThreshold = args.thr
nmsThreshold = args.nms
stdSize = 0.8
stdWeight = 2
stdImgSize = 512
asyncN = 0
def get_color(class_id):
r = min((class_id >> 0 & 1) * 128 + (class_id >> 3 & 1) * 64 + (class_id >> 6 & 1) * 32 + 80, 255)
g = min((class_id >> 1 & 1) * 128 + (class_id >> 4 & 1) * 64 + (class_id >> 7 & 1) * 32 + 40, 255)
b = min((class_id >> 2 & 1) * 128 + (class_id >> 5 & 1) * 64 + (class_id >> 8 & 1) * 32 + 40, 255)
return (int(b), int(g), int(r))
def get_text_color(bg_color):
luminance = 0.299 * bg_color[2] + 0.587 * bg_color[1] + 0.114 * bg_color[0]
return (0, 0, 0) if luminance > 128 else (255, 255, 255)
def postprocess(frame, outs):
frameHeight = frame.shape[0]
frameWidth = frame.shape[1]
classIds = []
confidences = []
boxes = []
if args.postprocessing == 'ssd':
# Network produces output blob with a shape 1x1xNx7 where N is a number of
# detections and an every detection is a vector of values
# [batchId, classId, confidence, left, top, right, bottom]
for out in outs:
for detection in out[0, 0]:
confidence = detection[2]
if confidence > confThreshold:
left = int(detection[3])
top = int(detection[4])
right = int(detection[5])
bottom = int(detection[6])
width = right - left + 1
height = bottom - top + 1
if width <= 2 or height <= 2:
left = int(detection[3] * frameWidth)
top = int(detection[4] * frameHeight)
right = int(detection[5] * frameWidth)
bottom = int(detection[6] * frameHeight)
width = right - left + 1
height = bottom - top + 1
classIds.append(int(detection[1]) - 1) # Skip background label
confidences.append(float(confidence))
boxes.append([left, top, width, height])
elif args.postprocessing == 'darknet':
box_scale_w = frameWidth
box_scale_h = frameHeight
for out in outs:
for detection in out:
scores = detection[4:]
if args.background_label_id >= 0:
scores = np.delete(scores, args.background_label_id)
classId = np.argmax(scores)
confidence = scores[classId]
if confidence > confThreshold:
center_x = int(detection[0] * box_scale_w)
center_y = int(detection[1] * box_scale_h)
width = int(detection[2] * box_scale_w)
height = int(detection[3] * box_scale_h)
left = int(center_x - width / 2)
top = int(center_y - height / 2)
classIds.append(classId)
confidences.append(float(confidence))
boxes.append([left, top, width, height])
elif args.postprocessing == 'yolov8' or args.postprocessing == 'yolov5':
# Network produces output blob with a shape NxC where N is a number of
# detected objects and C is a number of classes + 4 where the first 4
# numbers are [center_x, center_y, width, height]
box_scale_w = frameWidth / args.width
box_scale_h = frameHeight / args.height
for out in outs:
if args.postprocessing == 'yolov8':
out = out[0].transpose(1, 0)
else: # YOLOv5, no transposition needed
out = out[0]
for detection in out:
if args.postprocessing == 'yolov8':
scores = detection[4:]
obj_conf = 1
else:
scores = detection[5:]
obj_conf = detection[4]
classId = np.argmax(scores)
confidence = scores[classId]*obj_conf
if confidence > confThreshold:
center_x = int(detection[0] * box_scale_w)
center_y = int(detection[1] * box_scale_h)
width = int(detection[2] * box_scale_w)
height = int(detection[3] * box_scale_h)
left = int(center_x - width / 2)
top = int(center_y - height / 2)
classIds.append(classId)
confidences.append(float(confidence))
boxes.append([left, top, width, height])
else:
print('Unknown postprocessing method: ' + args.postprocessing)
exit()
# NMS is used inside Region layer only on DNN_BACKEND_OPENCV for another backends we need NMS in sample
# or NMS is required if number of outputs > 1
if len(outNames) > 1 or (args.postprocessing == 'darknet' or args.postprocessing == 'yolov8' or args.postprocessing == 'yolov5') and args.backend != cv.dnn.DNN_BACKEND_OPENCV:
indices = []
classIds = np.array(classIds)
boxes = np.array(boxes)
confidences = np.array(confidences)
unique_classes = set(classIds)
for cl in unique_classes:
class_indices = np.where(classIds == cl)[0]
conf = confidences[class_indices]
box = boxes[class_indices].tolist()
nms_indices = cv.dnn.NMSBoxes(box, conf, confThreshold, nmsThreshold)
indices.extend(class_indices[nms_indices])
else:
indices = np.arange(0, len(classIds))
return boxes, classIds, confidences, indices
def drawPred(classIds, confidences, boxes, indices, fontSize, fontThickness):
for i in indices:
box = boxes[i]
left = box[0]
top = box[1]
right = box[0] + box[2]
bottom = box[1] + box[3]
bg_color = get_color(classIds[i])
cv.rectangle(frame, (left, top), (right, bottom), bg_color, fontThickness)
label = '%.2f' % confidences[i]
# Print a label of class.
if labels:
assert(classIds[i] < len(labels))
label = '%s: %s' % (labels[classIds[i]], label)
labelSize, baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, fontSize, fontThickness)
top = max(top, labelSize[1])
cv.rectangle(frame, (int(left-fontThickness/2), top - labelSize[1]), (left + labelSize[0], top + baseLine), bg_color, cv.FILLED)
cv.putText(frame, label, (left, top-fontThickness), cv.FONT_HERSHEY_SIMPLEX, fontSize, get_text_color(bg_color), fontThickness)
# Process inputs
winName = 'Deep learning object detection in OpenCV'
cv.namedWindow(winName, cv.WINDOW_AUTOSIZE)
def callback(pos):
global confThreshold
confThreshold = pos / 100.0
cv.createTrackbar('Confidence threshold, %', winName, int(confThreshold * 100), 99, callback)
cap = cv.VideoCapture(cv.samples.findFileOrKeep(args.input) if args.input else 0)
class QueueFPS(queue.Queue):
def __init__(self):
queue.Queue.__init__(self)
self.startTime = 0
self.counter = 0
def put(self, v):
queue.Queue.put(self, v)
self.counter += 1
if self.counter == 1:
self.startTime = time.time()
def getFPS(self):
return self.counter / (time.time() - self.startTime)
process = True
#
# Frames capturing thread
#
framesQueue = QueueFPS()
def framesThreadBody():
global framesQueue, process
while process:
hasFrame, frame = cap.read()
if not hasFrame:
break
framesQueue.put(frame)
#
# Frames processing thread
#
processedFramesQueue = queue.Queue()
predictionsQueue = QueueFPS()
def processingThreadBody():
global processedFramesQueue, predictionsQueue, args, process, asyncN
futureOutputs = []
while process:
# Get a next frame
frame = None
try:
frame = framesQueue.get_nowait()
if asyncN:
if len(futureOutputs) == asyncN:
frame = None # Skip the frame
else:
framesQueue.queue.clear() # Skip the rest of frames
except queue.Empty:
pass
if not frame is None:
frameHeight = frame.shape[0]
frameWidth = frame.shape[1]
# Create a 4D blob from a frame.
inpWidth = args.width if args.width else frameWidth
inpHeight = args.height if args.height else frameHeight
blob = cv.dnn.blobFromImage(frame, scalefactor=args.scale, mean=args.mean, size=(inpWidth, inpHeight), swapRB=args.rgb, ddepth=cv.CV_32F)
processedFramesQueue.put(frame)
# Run a model
net.setInput(blob)
if asyncN:
futureOutputs.append(net.forwardAsync())
else:
outs = net.forward(outNames)
predictionsQueue.put(copy.deepcopy(outs))
while futureOutputs and futureOutputs[0].wait_for(0):
out = futureOutputs[0].get()
predictionsQueue.put(copy.deepcopy([out]))
del futureOutputs[0]
if args.use_threads:
framesThread = Thread(target=framesThreadBody)
framesThread.start()
processingThread = Thread(target=processingThreadBody)
processingThread.start()
#
# Postprocessing and rendering loop
#
while cv.waitKey(1) < 0:
try:
# Request prediction first because they put after frames
outs = predictionsQueue.get_nowait()
frame = processedFramesQueue.get_nowait()
imgWidth = max(frame.shape[:2])
fontSize = (stdSize*imgWidth)/stdImgSize
fontThickness = max(1,(stdWeight*imgWidth)//stdImgSize)
boxes, classIds, confidences, indices = postprocess(frame, outs)
drawPred(classIds, confidences, boxes, indices, fontSize, fontThickness)
fontSize = fontSize/2
# Put efficiency information.
if predictionsQueue.counter > 1:
label = 'Camera: %.2f FPS' % (framesQueue.getFPS())
cv.rectangle(frame, (0, 0), (int(260*fontSize), int(80*fontSize)), (255,255,255), cv.FILLED)
cv.putText(frame, label, (0, int(25*fontSize)), cv.FONT_HERSHEY_SIMPLEX, fontSize, (0, 0, 0), fontThickness)
label = 'Network: %.2f FPS' % (predictionsQueue.getFPS())
cv.putText(frame, label, (0, int(2*25*fontSize)), cv.FONT_HERSHEY_SIMPLEX, fontSize, (0, 0, 0), fontThickness)
label = 'Skipped frames: %d' % (framesQueue.counter - predictionsQueue.counter)
cv.putText(frame, label, (0, int(3*25*fontSize)), cv.FONT_HERSHEY_SIMPLEX, fontSize, (0, 0, 0), fontThickness)
cv.imshow(winName, frame)
except queue.Empty:
pass
process = False
framesThread.join()
processingThread.join()
else:
# Non-threaded processing if --async is 0
while cv.waitKey(1) < 0:
hasFrame, frame = cap.read()
if not hasFrame:
cv.waitKey()
break
frameHeight = frame.shape[0]
frameWidth = frame.shape[1]
inpWidth = args.width if args.width else frameWidth
inpHeight = args.height if args.height else frameHeight
blob = cv.dnn.blobFromImage(frame, scalefactor=args.scale, mean=args.mean, size=(inpWidth, inpHeight), swapRB=args.rgb, ddepth=cv.CV_32F)
net.setInput(blob)
outs = net.forward(outNames)
boxes, classIds, confidences, indices = postprocess(frame, outs)
drawPred(classIds, confidences, boxes, indices, (stdSize*max(frame.shape[:2]))/stdImgSize, (stdWeight*max(frame.shape[:2]))//stdImgSize)
cv.imshow(winName, frame)