mirror of
https://github.com/opencv/opencv.git
synced 2025-01-22 09:36:59 +08:00
294 lines
9.7 KiB
C++
294 lines
9.7 KiB
C++
#include "perf_precomp.hpp"
|
|
#include "opencv2/imgcodecs.hpp"
|
|
#include "opencv2/opencv_modules.hpp"
|
|
#include "opencv2/flann.hpp"
|
|
|
|
namespace opencv_test
|
|
{
|
|
using namespace perf;
|
|
|
|
typedef TestBaseWithParam<size_t> FeaturesFinderVec;
|
|
typedef TestBaseWithParam<string> match;
|
|
typedef tuple<string, int> matchVector_t;
|
|
typedef TestBaseWithParam<matchVector_t> matchVector;
|
|
|
|
#define NUMBER_IMAGES testing::Values(1, 5, 20)
|
|
#define SURF_MATCH_CONFIDENCE 0.65f
|
|
#define ORB_MATCH_CONFIDENCE 0.3f
|
|
#define WORK_MEGAPIX 0.6
|
|
|
|
#if defined(HAVE_OPENCV_XFEATURES2D) && defined(OPENCV_ENABLE_NONFREE)
|
|
#define TEST_DETECTORS testing::Values("surf", "orb")
|
|
#else
|
|
#define TEST_DETECTORS testing::Values<string>("orb")
|
|
#endif
|
|
|
|
PERF_TEST_P(FeaturesFinderVec, ParallelFeaturesFinder, NUMBER_IMAGES)
|
|
{
|
|
Mat img = imread( getDataPath("stitching/a1.png") );
|
|
vector<Mat> imgs(GetParam(), img);
|
|
vector<detail::ImageFeatures> features(imgs.size());
|
|
|
|
Ptr<Feature2D> finder = ORB::create();
|
|
|
|
TEST_CYCLE()
|
|
{
|
|
detail::computeImageFeatures(finder, imgs, features);
|
|
}
|
|
|
|
SANITY_CHECK_NOTHING();
|
|
}
|
|
|
|
PERF_TEST_P(FeaturesFinderVec, SerialFeaturesFinder, NUMBER_IMAGES)
|
|
{
|
|
Mat img = imread( getDataPath("stitching/a1.png") );
|
|
vector<Mat> imgs(GetParam(), img);
|
|
vector<detail::ImageFeatures> features(imgs.size());
|
|
|
|
Ptr<Feature2D> finder = ORB::create();
|
|
|
|
TEST_CYCLE()
|
|
{
|
|
for (size_t i = 0; i < imgs.size(); ++i)
|
|
detail::computeImageFeatures(finder, imgs[i], features[i]);
|
|
}
|
|
|
|
SANITY_CHECK_NOTHING();
|
|
}
|
|
|
|
PERF_TEST_P( match, bestOf2Nearest, TEST_DETECTORS)
|
|
{
|
|
Mat img1, img1_full = imread( getDataPath("stitching/boat1.jpg") );
|
|
Mat img2, img2_full = imread( getDataPath("stitching/boat2.jpg") );
|
|
float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total()));
|
|
float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total()));
|
|
resize(img1_full, img1, Size(), scale1, scale1, INTER_LINEAR_EXACT);
|
|
resize(img2_full, img2, Size(), scale2, scale2, INTER_LINEAR_EXACT);
|
|
|
|
Ptr<Feature2D> finder = getFeatureFinder(GetParam());
|
|
Ptr<detail::FeaturesMatcher> matcher;
|
|
if (GetParam() == "surf")
|
|
{
|
|
matcher = makePtr<detail::BestOf2NearestMatcher>(false, SURF_MATCH_CONFIDENCE);
|
|
}
|
|
else if (GetParam() == "orb")
|
|
{
|
|
matcher = makePtr<detail::BestOf2NearestMatcher>(false, ORB_MATCH_CONFIDENCE);
|
|
}
|
|
else
|
|
{
|
|
FAIL() << "Unknown 2D features type: " << GetParam();
|
|
}
|
|
|
|
detail::ImageFeatures features1, features2;
|
|
detail::computeImageFeatures(finder, img1, features1);
|
|
detail::computeImageFeatures(finder, img2, features2);
|
|
|
|
detail::MatchesInfo pairwise_matches;
|
|
|
|
declare.in(features1.descriptors, features2.descriptors);
|
|
|
|
while(next())
|
|
{
|
|
cvflann::seed_random(42);//for predictive FlannBasedMatcher
|
|
startTimer();
|
|
(*matcher)(features1, features2, pairwise_matches);
|
|
stopTimer();
|
|
matcher->collectGarbage();
|
|
}
|
|
|
|
Mat dist (pairwise_matches.H, Range::all(), Range(2, 3));
|
|
Mat R (pairwise_matches.H, Range::all(), Range(0, 2));
|
|
// separate transform matrix, use lower error on rotations
|
|
SANITY_CHECK(dist, 3., ERROR_ABSOLUTE);
|
|
SANITY_CHECK(R, .06, ERROR_ABSOLUTE);
|
|
}
|
|
|
|
PERF_TEST_P( matchVector, bestOf2NearestVectorFeatures, testing::Combine(
|
|
TEST_DETECTORS,
|
|
testing::Values(2, 4, 8))
|
|
)
|
|
{
|
|
Mat img1, img1_full = imread( getDataPath("stitching/boat1.jpg") );
|
|
Mat img2, img2_full = imread( getDataPath("stitching/boat2.jpg") );
|
|
float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total()));
|
|
float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total()));
|
|
resize(img1_full, img1, Size(), scale1, scale1, INTER_LINEAR_EXACT);
|
|
resize(img2_full, img2, Size(), scale2, scale2, INTER_LINEAR_EXACT);
|
|
|
|
string detectorName = get<0>(GetParam());
|
|
int featuresVectorSize = get<1>(GetParam());
|
|
Ptr<Feature2D> finder = getFeatureFinder(detectorName);
|
|
Ptr<detail::FeaturesMatcher> matcher;
|
|
if (detectorName == "surf")
|
|
{
|
|
matcher = makePtr<detail::BestOf2NearestMatcher>(false, SURF_MATCH_CONFIDENCE);
|
|
}
|
|
else if (detectorName == "orb")
|
|
{
|
|
matcher = makePtr<detail::BestOf2NearestMatcher>(false, ORB_MATCH_CONFIDENCE);
|
|
}
|
|
else
|
|
{
|
|
FAIL() << "Unknown 2D features type: " << get<0>(GetParam());
|
|
}
|
|
|
|
detail::ImageFeatures features1, features2;
|
|
detail::computeImageFeatures(finder, img1, features1);
|
|
detail::computeImageFeatures(finder, img2, features2);
|
|
vector<detail::ImageFeatures> features;
|
|
vector<detail::MatchesInfo> pairwise_matches;
|
|
for(int i = 0; i < featuresVectorSize/2; i++)
|
|
{
|
|
features.push_back(features1);
|
|
features.push_back(features2);
|
|
}
|
|
|
|
declare.time(200);
|
|
while(next())
|
|
{
|
|
cvflann::seed_random(42);//for predictive FlannBasedMatcher
|
|
startTimer();
|
|
(*matcher)(features, pairwise_matches);
|
|
stopTimer();
|
|
matcher->collectGarbage();
|
|
}
|
|
|
|
size_t matches_count = 0;
|
|
for (size_t i = 0; i < pairwise_matches.size(); ++i)
|
|
{
|
|
if (pairwise_matches[i].src_img_idx < 0)
|
|
continue;
|
|
|
|
EXPECT_GT(pairwise_matches[i].matches.size(), 95u);
|
|
EXPECT_FALSE(pairwise_matches[i].H.empty());
|
|
++matches_count;
|
|
}
|
|
|
|
EXPECT_GT(matches_count, 0u);
|
|
|
|
SANITY_CHECK_NOTHING();
|
|
}
|
|
|
|
PERF_TEST_P( match, affineBestOf2Nearest, TEST_DETECTORS)
|
|
{
|
|
Mat img1, img1_full = imread( getDataPath("stitching/s1.jpg") );
|
|
Mat img2, img2_full = imread( getDataPath("stitching/s2.jpg") );
|
|
float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total()));
|
|
float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total()));
|
|
resize(img1_full, img1, Size(), scale1, scale1, INTER_LINEAR_EXACT);
|
|
resize(img2_full, img2, Size(), scale2, scale2, INTER_LINEAR_EXACT);
|
|
|
|
Ptr<Feature2D> finder = getFeatureFinder(GetParam());
|
|
Ptr<detail::FeaturesMatcher> matcher;
|
|
if (GetParam() == "surf")
|
|
{
|
|
matcher = makePtr<detail::AffineBestOf2NearestMatcher>(false, false, SURF_MATCH_CONFIDENCE);
|
|
}
|
|
else if (GetParam() == "orb")
|
|
{
|
|
matcher = makePtr<detail::AffineBestOf2NearestMatcher>(false, false, ORB_MATCH_CONFIDENCE);
|
|
}
|
|
else
|
|
{
|
|
FAIL() << "Unknown 2D features type: " << GetParam();
|
|
}
|
|
|
|
detail::ImageFeatures features1, features2;
|
|
detail::computeImageFeatures(finder, img1, features1);
|
|
detail::computeImageFeatures(finder, img2, features2);
|
|
|
|
detail::MatchesInfo pairwise_matches;
|
|
|
|
declare.in(features1.descriptors, features2.descriptors);
|
|
|
|
while(next())
|
|
{
|
|
cvflann::seed_random(42);//for predictive FlannBasedMatcher
|
|
startTimer();
|
|
(*matcher)(features1, features2, pairwise_matches);
|
|
stopTimer();
|
|
matcher->collectGarbage();
|
|
}
|
|
|
|
// separate rotation and translation in transform matrix
|
|
Mat T (pairwise_matches.H, Range(0, 2), Range(2, 3));
|
|
Mat R (pairwise_matches.H, Range(0, 2), Range(0, 2));
|
|
Mat h (pairwise_matches.H, Range(2, 3), Range::all());
|
|
SANITY_CHECK(T, 5, ERROR_ABSOLUTE); // allow 5 pixels diff in translations
|
|
SANITY_CHECK(R, .01, ERROR_ABSOLUTE); // rotations must be more precise
|
|
// last row should be precisely (0, 0, 1) as it is just added for representation in homogeneous
|
|
// coordinates
|
|
EXPECT_DOUBLE_EQ(h.at<double>(0), 0.);
|
|
EXPECT_DOUBLE_EQ(h.at<double>(1), 0.);
|
|
EXPECT_DOUBLE_EQ(h.at<double>(2), 1.);
|
|
}
|
|
|
|
PERF_TEST_P( matchVector, affineBestOf2NearestVectorFeatures, testing::Combine(
|
|
TEST_DETECTORS,
|
|
testing::Values(2, 4, 8))
|
|
)
|
|
{
|
|
Mat img1, img1_full = imread( getDataPath("stitching/s1.jpg") );
|
|
Mat img2, img2_full = imread( getDataPath("stitching/s2.jpg") );
|
|
float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total()));
|
|
float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total()));
|
|
resize(img1_full, img1, Size(), scale1, scale1, INTER_LINEAR_EXACT);
|
|
resize(img2_full, img2, Size(), scale2, scale2, INTER_LINEAR_EXACT);
|
|
|
|
string detectorName = get<0>(GetParam());
|
|
int featuresVectorSize = get<1>(GetParam());
|
|
Ptr<Feature2D> finder = getFeatureFinder(detectorName);
|
|
Ptr<detail::FeaturesMatcher> matcher;
|
|
if (detectorName == "surf")
|
|
{
|
|
matcher = makePtr<detail::AffineBestOf2NearestMatcher>(false, false, SURF_MATCH_CONFIDENCE);
|
|
}
|
|
else if (detectorName == "orb")
|
|
{
|
|
matcher = makePtr<detail::AffineBestOf2NearestMatcher>(false, false, ORB_MATCH_CONFIDENCE);
|
|
}
|
|
else
|
|
{
|
|
FAIL() << "Unknown 2D features type: " << get<0>(GetParam());
|
|
}
|
|
|
|
detail::ImageFeatures features1, features2;
|
|
detail::computeImageFeatures(finder, img1, features1);
|
|
detail::computeImageFeatures(finder, img2, features2);
|
|
vector<detail::ImageFeatures> features;
|
|
vector<detail::MatchesInfo> pairwise_matches;
|
|
for(int i = 0; i < featuresVectorSize/2; i++)
|
|
{
|
|
features.push_back(features1);
|
|
features.push_back(features2);
|
|
}
|
|
|
|
declare.time(200);
|
|
while(next())
|
|
{
|
|
cvflann::seed_random(42);//for predictive FlannBasedMatcher
|
|
startTimer();
|
|
(*matcher)(features, pairwise_matches);
|
|
stopTimer();
|
|
matcher->collectGarbage();
|
|
}
|
|
|
|
size_t matches_count = 0;
|
|
for (size_t i = 0; i < pairwise_matches.size(); ++i)
|
|
{
|
|
if (pairwise_matches[i].src_img_idx < 0)
|
|
continue;
|
|
|
|
EXPECT_GT(pairwise_matches[i].matches.size(), 150u);
|
|
EXPECT_FALSE(pairwise_matches[i].H.empty());
|
|
++matches_count;
|
|
}
|
|
|
|
EXPECT_GT(matches_count, 0u);
|
|
|
|
SANITY_CHECK_NOTHING();
|
|
}
|
|
|
|
} // namespace
|