mirror of
https://github.com/opencv/opencv.git
synced 2024-12-05 09:49:12 +08:00
495 lines
16 KiB
C++
495 lines
16 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
static
|
|
void warpFrame(const Mat& image, const Mat& depth, const Mat& rvec, const Mat& tvec, const Mat& K,
|
|
Mat& warpedImage, Mat& warpedDepth)
|
|
{
|
|
CV_Assert(!image.empty());
|
|
CV_Assert(image.type() == CV_8UC1);
|
|
|
|
CV_Assert(depth.size() == image.size());
|
|
CV_Assert(depth.type() == CV_32FC1);
|
|
|
|
CV_Assert(!rvec.empty());
|
|
CV_Assert(rvec.total() == 3);
|
|
CV_Assert(rvec.type() == CV_64FC1);
|
|
|
|
CV_Assert(!tvec.empty());
|
|
CV_Assert(tvec.size() == Size(1, 3));
|
|
CV_Assert(tvec.type() == CV_64FC1);
|
|
|
|
warpedImage.create(image.size(), CV_8UC1);
|
|
warpedImage = Scalar(0);
|
|
warpedDepth.create(image.size(), CV_32FC1);
|
|
warpedDepth = Scalar(FLT_MAX);
|
|
|
|
Mat cloud;
|
|
depthTo3d(depth, K, cloud);
|
|
|
|
Mat cloud3, channels[4];
|
|
cv::split(cloud, channels);
|
|
std::vector<Mat> merged = { channels[0], channels[1], channels[2] };
|
|
cv::merge(merged, cloud3);
|
|
|
|
Mat Rt = Mat::eye(4, 4, CV_64FC1);
|
|
{
|
|
Mat R, dst;
|
|
cv::Rodrigues(rvec, R);
|
|
|
|
dst = Rt(Rect(0,0,3,3));
|
|
R.copyTo(dst);
|
|
|
|
dst = Rt(Rect(3,0,1,3));
|
|
tvec.copyTo(dst);
|
|
}
|
|
Mat warpedCloud, warpedImagePoints;
|
|
perspectiveTransform(cloud3, warpedCloud, Rt);
|
|
projectPoints(warpedCloud.reshape(3, 1), Mat(3,1,CV_32FC1, Scalar(0)), Mat(3,1,CV_32FC1, Scalar(0)), K, Mat(1,5,CV_32FC1, Scalar(0)), warpedImagePoints);
|
|
warpedImagePoints = warpedImagePoints.reshape(2, cloud.rows);
|
|
Rect r(0, 0, image.cols, image.rows);
|
|
for(int y = 0; y < cloud.rows; y++)
|
|
{
|
|
for(int x = 0; x < cloud.cols; x++)
|
|
{
|
|
Point p = warpedImagePoints.at<Point2f>(y,x);
|
|
if(r.contains(p))
|
|
{
|
|
float curDepth = warpedDepth.at<float>(p.y, p.x);
|
|
float newDepth = warpedCloud.at<Point3f>(y, x).z;
|
|
if(newDepth < curDepth && newDepth > 0)
|
|
{
|
|
warpedImage.at<uchar>(p.y, p.x) = image.at<uchar>(y,x);
|
|
warpedDepth.at<float>(p.y, p.x) = newDepth;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
warpedDepth.setTo(std::numeric_limits<float>::quiet_NaN(), warpedDepth > 100);
|
|
}
|
|
|
|
static
|
|
void dilateFrame(Mat& image, Mat& depth)
|
|
{
|
|
CV_Assert(!image.empty());
|
|
CV_Assert(image.type() == CV_8UC1);
|
|
|
|
CV_Assert(!depth.empty());
|
|
CV_Assert(depth.type() == CV_32FC1);
|
|
CV_Assert(depth.size() == image.size());
|
|
|
|
Mat mask(image.size(), CV_8UC1, Scalar(255));
|
|
for(int y = 0; y < depth.rows; y++)
|
|
for(int x = 0; x < depth.cols; x++)
|
|
if(cvIsNaN(depth.at<float>(y,x)) || depth.at<float>(y,x) > 10 || depth.at<float>(y,x) <= FLT_EPSILON)
|
|
mask.at<uchar>(y,x) = 0;
|
|
|
|
image.setTo(255, ~mask);
|
|
Mat minImage;
|
|
erode(image, minImage, Mat());
|
|
|
|
image.setTo(0, ~mask);
|
|
Mat maxImage;
|
|
dilate(image, maxImage, Mat());
|
|
|
|
depth.setTo(FLT_MAX, ~mask);
|
|
Mat minDepth;
|
|
erode(depth, minDepth, Mat());
|
|
|
|
depth.setTo(0, ~mask);
|
|
Mat maxDepth;
|
|
dilate(depth, maxDepth, Mat());
|
|
|
|
Mat dilatedMask;
|
|
dilate(mask, dilatedMask, Mat(), Point(-1,-1), 1);
|
|
for(int y = 0; y < depth.rows; y++)
|
|
for(int x = 0; x < depth.cols; x++)
|
|
if(!mask.at<uchar>(y,x) && dilatedMask.at<uchar>(y,x))
|
|
{
|
|
image.at<uchar>(y,x) = static_cast<uchar>(0.5f * (static_cast<float>(minImage.at<uchar>(y,x)) +
|
|
static_cast<float>(maxImage.at<uchar>(y,x))));
|
|
depth.at<float>(y,x) = 0.5f * (minDepth.at<float>(y,x) + maxDepth.at<float>(y,x));
|
|
}
|
|
}
|
|
|
|
class OdometryTest
|
|
{
|
|
public:
|
|
OdometryTest(OdometryType _otype,
|
|
OdometryAlgoType _algtype,
|
|
double _maxError1,
|
|
double _maxError5,
|
|
bool _testScale = false,
|
|
double _idError = DBL_EPSILON) :
|
|
otype(_otype),
|
|
algtype(_algtype),
|
|
maxError1(_maxError1),
|
|
maxError5(_maxError5),
|
|
testScale(_testScale),
|
|
idError(_idError)
|
|
{ }
|
|
|
|
void readData(Mat& image, Mat& depth) const;
|
|
static Mat getCameraMatrix()
|
|
{
|
|
float fx = 525.0f, // default
|
|
fy = 525.0f,
|
|
cx = 319.5f,
|
|
cy = 239.5f;
|
|
Matx33f K(fx, 0, cx,
|
|
0, fy, cy,
|
|
0, 0, 1);
|
|
return Mat(K);
|
|
}
|
|
static void generateRandomTransformation(Mat& R, Mat& t);
|
|
|
|
void run();
|
|
void checkUMats();
|
|
void prepareFrameCheck();
|
|
|
|
OdometryType otype;
|
|
OdometryAlgoType algtype;
|
|
double maxError1;
|
|
double maxError5;
|
|
bool testScale;
|
|
double idError;
|
|
};
|
|
|
|
|
|
void OdometryTest::readData(Mat& image, Mat& depth) const
|
|
{
|
|
std::string dataPath = cvtest::TS::ptr()->get_data_path();
|
|
std::string imageFilename = dataPath + "/cv/rgbd/rgb.png";
|
|
std::string depthFilename = dataPath + "/cv/rgbd/depth.png";
|
|
|
|
image = imread(imageFilename, 0);
|
|
depth = imread(depthFilename, -1);
|
|
|
|
if(image.empty())
|
|
{
|
|
FAIL() << "Image " << imageFilename.c_str() << " can not be read" << std::endl;
|
|
}
|
|
if(depth.empty())
|
|
{
|
|
FAIL() << "Depth" << depthFilename.c_str() << "can not be read" << std::endl;
|
|
}
|
|
|
|
CV_DbgAssert(image.type() == CV_8UC1);
|
|
CV_DbgAssert(depth.type() == CV_16UC1);
|
|
{
|
|
Mat depth_flt;
|
|
depth.convertTo(depth_flt, CV_32FC1, 1.f/5000.f);
|
|
depth_flt.setTo(std::numeric_limits<float>::quiet_NaN(), depth_flt < FLT_EPSILON);
|
|
depth = depth_flt;
|
|
}
|
|
}
|
|
|
|
void OdometryTest::generateRandomTransformation(Mat& rvec, Mat& tvec)
|
|
{
|
|
const float maxRotation = (float)(3.f / 180.f * CV_PI); //rad
|
|
const float maxTranslation = 0.02f; //m
|
|
|
|
RNG& rng = theRNG();
|
|
rvec.create(3, 1, CV_64FC1);
|
|
tvec.create(3, 1, CV_64FC1);
|
|
|
|
randu(rvec, Scalar(-1000), Scalar(1000));
|
|
normalize(rvec, rvec, rng.uniform(0.007f, maxRotation));
|
|
|
|
randu(tvec, Scalar(-1000), Scalar(1000));
|
|
normalize(tvec, tvec, rng.uniform(0.008f, maxTranslation));
|
|
}
|
|
|
|
void OdometryTest::checkUMats()
|
|
{
|
|
Mat K = getCameraMatrix();
|
|
|
|
Mat image, depth;
|
|
readData(image, depth);
|
|
|
|
OdometrySettings ods;
|
|
ods.setCameraMatrix(K);
|
|
Odometry odometry = Odometry(otype, ods, algtype);
|
|
OdometryFrame odf = odometry.createOdometryFrame(OdometryFrameStoreType::UMAT);
|
|
|
|
Mat calcRt;
|
|
|
|
UMat uimage, udepth;
|
|
image.copyTo(uimage);
|
|
depth.copyTo(udepth);
|
|
odf.setImage(uimage);
|
|
odf.setDepth(udepth);
|
|
uimage.release();
|
|
udepth.release();
|
|
|
|
odometry.prepareFrame(odf);
|
|
bool isComputed = odometry.compute(odf, odf, calcRt);
|
|
ASSERT_TRUE(isComputed);
|
|
double diff = cv::norm(calcRt, Mat::eye(4, 4, CV_64FC1));
|
|
if (diff > idError)
|
|
{
|
|
FAIL() << "Incorrect transformation between the same frame (not the identity matrix), diff = " << diff << std::endl;
|
|
}
|
|
|
|
}
|
|
|
|
void OdometryTest::run()
|
|
{
|
|
Mat K = getCameraMatrix();
|
|
|
|
Mat image, depth;
|
|
readData(image, depth);
|
|
OdometrySettings ods;
|
|
ods.setCameraMatrix(K);
|
|
Odometry odometry = Odometry(otype, ods, algtype);
|
|
OdometryFrame odf = odometry.createOdometryFrame();
|
|
odf.setImage(image);
|
|
odf.setDepth(depth);
|
|
Mat calcRt;
|
|
float scale = 1.0f;
|
|
|
|
// 1. Try to find Rt between the same frame (try masks also).
|
|
Mat mask(image.size(), CV_8UC1, Scalar(255));
|
|
|
|
odometry.prepareFrame(odf);
|
|
bool isComputed;
|
|
if (testScale)
|
|
isComputed = odometry.compute(odf, odf, calcRt, scale);
|
|
else
|
|
isComputed = odometry.compute(odf, odf, calcRt);
|
|
|
|
if(!isComputed)
|
|
{
|
|
FAIL() << "Can not find Rt between the same frame" << std::endl;
|
|
}
|
|
double ndiff = cv::norm(calcRt, Mat::eye(4,4,CV_64FC1));
|
|
float sdiff = abs(scale - 1.f);
|
|
if (ndiff > idError && abs(scale - 1.f) < FLT_EPSILON)
|
|
{
|
|
FAIL() << "Incorrect transformation between the same frame (not the identity matrix), diff = " << ndiff << " sdiff = " << sdiff << std::endl;
|
|
}
|
|
|
|
// 2. Generate random rigid body motion in some ranges several times (iterCount).
|
|
// On each iteration an input frame is warped using generated transformation.
|
|
// Odometry is run on the following pair: the original frame and the warped one.
|
|
// Comparing a computed transformation with an applied one we compute 2 errors:
|
|
// better_1time_count - count of poses which error is less than ground truth pose,
|
|
// better_5times_count - count of poses which error is 5 times less than ground truth pose.
|
|
int iterCount = 100;
|
|
int better_1time_count = 0;
|
|
int better_5times_count = 0;
|
|
for (int iter = 0; iter < iterCount; iter++)
|
|
{
|
|
Mat rvec, tvec;
|
|
generateRandomTransformation(rvec, tvec);
|
|
|
|
Mat warpedImage, warpedDepth, scaledDepth;
|
|
|
|
float test_scale = 1.03f;
|
|
scaledDepth = testScale ? depth * test_scale : depth;
|
|
|
|
warpFrame(image, scaledDepth, rvec, tvec, K, warpedImage, warpedDepth);
|
|
dilateFrame(warpedImage, warpedDepth); // due to inaccuracy after warping
|
|
|
|
OdometryFrame odfSrc = odometry.createOdometryFrame();
|
|
OdometryFrame odfDst = odometry.createOdometryFrame();
|
|
|
|
float scale_error = 0.05f;
|
|
|
|
odfSrc.setImage(image);
|
|
odfSrc.setDepth(depth);
|
|
odfDst.setImage(warpedImage);
|
|
odfDst.setDepth(warpedDepth);
|
|
|
|
odometry.prepareFrames(odfSrc, odfDst);
|
|
if (testScale)
|
|
isComputed = odometry.compute(odfSrc, odfDst, calcRt, scale);
|
|
else
|
|
isComputed = odometry.compute(odfSrc, odfDst, calcRt);
|
|
|
|
if (!isComputed)
|
|
{
|
|
CV_LOG_INFO(NULL, "Iter " << iter << "; Odometry compute returned false");
|
|
continue;
|
|
}
|
|
Mat calcR = calcRt(Rect(0, 0, 3, 3)), calcRvec;
|
|
cv::Rodrigues(calcR, calcRvec);
|
|
calcRvec = calcRvec.reshape(rvec.channels(), rvec.rows);
|
|
Mat calcTvec = calcRt(Rect(3,0,1,3));
|
|
|
|
if (cvtest::debugLevel >= 10)
|
|
{
|
|
imshow("image", image);
|
|
imshow("warpedImage", warpedImage);
|
|
Mat resultImage, resultDepth;
|
|
warpFrame(image, depth, calcRvec, calcTvec, K, resultImage, resultDepth);
|
|
imshow("resultImage", resultImage);
|
|
waitKey(100);
|
|
}
|
|
|
|
// compare rotation
|
|
double possibleError = algtype == OdometryAlgoType::COMMON ? 0.11f : 0.015f;
|
|
if (testScale)
|
|
possibleError = 0.2f;
|
|
|
|
Affine3f src = Affine3f(Vec3f(rvec), Vec3f(tvec));
|
|
Affine3f res = Affine3f(Vec3f(calcRvec), Vec3f(calcTvec));
|
|
Affine3f src_inv = src.inv();
|
|
Affine3f diff = res * src_inv;
|
|
double rdiffnorm = cv::norm(diff.rvec());
|
|
double tdiffnorm = cv::norm(diff.translation());
|
|
|
|
if (rdiffnorm < possibleError && tdiffnorm < possibleError && abs(scale - test_scale) < scale_error)
|
|
better_1time_count++;
|
|
if (5. * rdiffnorm < possibleError && 5 * tdiffnorm < possibleError && abs(scale - test_scale) < scale_error)
|
|
better_5times_count++;
|
|
|
|
CV_LOG_INFO(NULL, "Iter " << iter);
|
|
CV_LOG_INFO(NULL, "rdiff: " << Vec3f(diff.rvec()) << "; rdiffnorm: " << rdiffnorm);
|
|
CV_LOG_INFO(NULL, "tdiff: " << Vec3f(diff.translation()) << "; tdiffnorm: " << tdiffnorm);
|
|
CV_LOG_INFO(NULL, "test_scale: " << test_scale << "; scale: " << scale);
|
|
|
|
CV_LOG_INFO(NULL, "better_1time_count " << better_1time_count << "; better_5time_count " << better_5times_count);
|
|
}
|
|
|
|
if(static_cast<double>(better_1time_count) < maxError1 * static_cast<double>(iterCount))
|
|
{
|
|
FAIL() << "Incorrect count of accurate poses [1st case]: "
|
|
<< static_cast<double>(better_1time_count) << " / "
|
|
<< maxError1 * static_cast<double>(iterCount) << std::endl;
|
|
}
|
|
|
|
if(static_cast<double>(better_5times_count) < maxError5 * static_cast<double>(iterCount))
|
|
{
|
|
FAIL() << "Incorrect count of accurate poses [2nd case]: "
|
|
<< static_cast<double>(better_5times_count) << " / "
|
|
<< maxError5 * static_cast<double>(iterCount) << std::endl;
|
|
}
|
|
}
|
|
|
|
void OdometryTest::prepareFrameCheck()
|
|
{
|
|
Mat K = getCameraMatrix();
|
|
|
|
Mat image, depth;
|
|
readData(image, depth);
|
|
OdometrySettings ods;
|
|
ods.setCameraMatrix(K);
|
|
Odometry odometry = Odometry(otype, ods, algtype);
|
|
OdometryFrame odf = odometry.createOdometryFrame();
|
|
odf.setImage(image);
|
|
odf.setDepth(depth);
|
|
|
|
odometry.prepareFrame(odf);
|
|
|
|
Mat points, mask;
|
|
odf.getPyramidAt(points, OdometryFramePyramidType::PYR_CLOUD, 0);
|
|
odf.getPyramidAt(mask, OdometryFramePyramidType::PYR_MASK, 0);
|
|
|
|
OdometryFrame todf = odometry.createOdometryFrame();
|
|
if (otype != OdometryType::DEPTH)
|
|
{
|
|
Mat img;
|
|
odf.getPyramidAt(img, OdometryFramePyramidType::PYR_IMAGE, 0);
|
|
todf.setPyramidLevel(1, OdometryFramePyramidType::PYR_IMAGE);
|
|
todf.setPyramidAt(img, OdometryFramePyramidType::PYR_IMAGE, 0);
|
|
}
|
|
todf.setPyramidLevel(1, OdometryFramePyramidType::PYR_CLOUD);
|
|
todf.setPyramidAt(points, OdometryFramePyramidType::PYR_CLOUD, 0);
|
|
todf.setPyramidLevel(1, OdometryFramePyramidType::PYR_MASK);
|
|
todf.setPyramidAt(mask, OdometryFramePyramidType::PYR_MASK, 0);
|
|
|
|
odometry.prepareFrame(todf);
|
|
}
|
|
|
|
/****************************************************************************************\
|
|
* Tests registrations *
|
|
\****************************************************************************************/
|
|
|
|
TEST(RGBD_Odometry_Rgbd, algorithmic)
|
|
{
|
|
OdometryTest test(OdometryType::RGB, OdometryAlgoType::COMMON, 0.99, 0.89);
|
|
test.run();
|
|
}
|
|
|
|
TEST(RGBD_Odometry_ICP, algorithmic)
|
|
{
|
|
OdometryTest test(OdometryType::DEPTH, OdometryAlgoType::COMMON, 0.99, 0.99);
|
|
test.run();
|
|
}
|
|
|
|
TEST(RGBD_Odometry_ICP_Scale, algorithmic)
|
|
{
|
|
OdometryTest test(OdometryType::DEPTH, OdometryAlgoType::COMMON, 0.65, 0.0, true);
|
|
test.run();
|
|
}
|
|
|
|
TEST(RGBD_Odometry_RgbdICP, algorithmic)
|
|
{
|
|
OdometryTest test(OdometryType::RGB_DEPTH, OdometryAlgoType::COMMON, 0.99, 0.99);
|
|
test.run();
|
|
}
|
|
|
|
TEST(RGBD_Odometry_FastICP, algorithmic)
|
|
{
|
|
OdometryTest test(OdometryType::DEPTH, OdometryAlgoType::FAST, 0.99, 0.89, false, FLT_EPSILON);
|
|
test.run();
|
|
}
|
|
|
|
|
|
TEST(RGBD_Odometry_Rgbd, UMats)
|
|
{
|
|
OdometryTest test(OdometryType::RGB, OdometryAlgoType::COMMON, 0.99, 0.89);
|
|
test.checkUMats();
|
|
}
|
|
|
|
TEST(RGBD_Odometry_ICP, UMats)
|
|
{
|
|
OdometryTest test(OdometryType::DEPTH, OdometryAlgoType::COMMON, 0.99, 0.99);
|
|
test.checkUMats();
|
|
}
|
|
|
|
TEST(RGBD_Odometry_RgbdICP, UMats)
|
|
{
|
|
OdometryTest test(OdometryType::RGB_DEPTH, OdometryAlgoType::COMMON, 0.99, 0.99);
|
|
test.checkUMats();
|
|
}
|
|
|
|
TEST(RGBD_Odometry_FastICP, UMats)
|
|
{
|
|
OdometryTest test(OdometryType::DEPTH, OdometryAlgoType::FAST, 0.99, 0.89, false, FLT_EPSILON);
|
|
test.checkUMats();
|
|
}
|
|
|
|
|
|
TEST(RGBD_Odometry_Rgbd, prepareFrame)
|
|
{
|
|
OdometryTest test(OdometryType::RGB, OdometryAlgoType::COMMON, 0.99, 0.89);
|
|
test.prepareFrameCheck();
|
|
}
|
|
|
|
TEST(RGBD_Odometry_ICP, prepareFrame)
|
|
{
|
|
OdometryTest test(OdometryType::DEPTH, OdometryAlgoType::COMMON, 0.99, 0.99);
|
|
test.prepareFrameCheck();
|
|
}
|
|
|
|
TEST(RGBD_Odometry_RgbdICP, prepareFrame)
|
|
{
|
|
OdometryTest test(OdometryType::RGB_DEPTH, OdometryAlgoType::COMMON, 0.99, 0.99);
|
|
test.prepareFrameCheck();
|
|
}
|
|
|
|
TEST(RGBD_Odometry_FastICP, prepareFrame)
|
|
{
|
|
OdometryTest test(OdometryType::DEPTH, OdometryAlgoType::FAST, 0.99, 0.89, FLT_EPSILON);
|
|
test.prepareFrameCheck();
|
|
}
|
|
|
|
}} // namespace
|