opencv/modules/cudaarithm/perf/perf_arithm.cpp
2016-11-29 01:18:10 +03:00

259 lines
7.5 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"
using namespace std;
using namespace testing;
using namespace perf;
namespace { // workaround conflict with DftFlags
//////////////////////////////////////////////////////////////////////
// GEMM
#ifdef HAVE_CUBLAS
CV_FLAGS(GemmFlags, 0, cv::GEMM_1_T, cv::GEMM_2_T, cv::GEMM_3_T)
#define ALL_GEMM_FLAGS Values(GemmFlags(0), GemmFlags(cv::GEMM_1_T), GemmFlags(cv::GEMM_2_T), GemmFlags(cv::GEMM_3_T), \
GemmFlags(cv::GEMM_1_T | cv::GEMM_2_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_3_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_2_T | cv::GEMM_3_T))
DEF_PARAM_TEST(Sz_Type_Flags, cv::Size, MatType, GemmFlags);
PERF_TEST_P(Sz_Type_Flags, GEMM,
Combine(Values(cv::Size(512, 512), cv::Size(1024, 1024)),
Values(CV_32FC1, CV_32FC2, CV_64FC1),
ALL_GEMM_FLAGS))
{
const cv::Size size = GET_PARAM(0);
const int type = GET_PARAM(1);
const int flags = GET_PARAM(2);
cv::Mat src1(size, type);
declare.in(src1, WARMUP_RNG);
cv::Mat src2(size, type);
declare.in(src2, WARMUP_RNG);
cv::Mat src3(size, type);
declare.in(src3, WARMUP_RNG);
if (PERF_RUN_CUDA())
{
declare.time(5.0);
const cv::cuda::GpuMat d_src1(src1);
const cv::cuda::GpuMat d_src2(src2);
const cv::cuda::GpuMat d_src3(src3);
cv::cuda::GpuMat dst;
TEST_CYCLE() cv::cuda::gemm(d_src1, d_src2, 1.0, d_src3, 1.0, dst, flags);
CUDA_SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE);
}
else
{
declare.time(50.0);
cv::Mat dst;
TEST_CYCLE() cv::gemm(src1, src2, 1.0, src3, 1.0, dst, flags);
CPU_SANITY_CHECK(dst);
}
}
#endif
//////////////////////////////////////////////////////////////////////
// MulSpectrums
CV_FLAGS(DftFlags, 0, cv::DFT_INVERSE, cv::DFT_SCALE, cv::DFT_ROWS, cv::DFT_COMPLEX_OUTPUT, cv::DFT_REAL_OUTPUT)
DEF_PARAM_TEST(Sz_Flags, cv::Size, DftFlags);
PERF_TEST_P(Sz_Flags, MulSpectrums,
Combine(CUDA_TYPICAL_MAT_SIZES,
Values(0, DftFlags(cv::DFT_ROWS))))
{
const cv::Size size = GET_PARAM(0);
const int flag = GET_PARAM(1);
cv::Mat a(size, CV_32FC2);
cv::Mat b(size, CV_32FC2);
declare.in(a, b, WARMUP_RNG);
if (PERF_RUN_CUDA())
{
const cv::cuda::GpuMat d_a(a);
const cv::cuda::GpuMat d_b(b);
cv::cuda::GpuMat dst;
TEST_CYCLE() cv::cuda::mulSpectrums(d_a, d_b, dst, flag);
CUDA_SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE);
}
else
{
cv::Mat dst;
TEST_CYCLE() cv::mulSpectrums(a, b, dst, flag);
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// MulAndScaleSpectrums
PERF_TEST_P(Sz, MulAndScaleSpectrums,
CUDA_TYPICAL_MAT_SIZES)
{
const cv::Size size = GetParam();
const float scale = 1.f / size.area();
cv::Mat src1(size, CV_32FC2);
cv::Mat src2(size, CV_32FC2);
declare.in(src1,src2, WARMUP_RNG);
if (PERF_RUN_CUDA())
{
const cv::cuda::GpuMat d_src1(src1);
const cv::cuda::GpuMat d_src2(src2);
cv::cuda::GpuMat dst;
TEST_CYCLE() cv::cuda::mulAndScaleSpectrums(d_src1, d_src2, dst, cv::DFT_ROWS, scale, false);
CUDA_SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE);
}
else
{
FAIL_NO_CPU();
}
}
//////////////////////////////////////////////////////////////////////
// Dft
PERF_TEST_P(Sz_Flags, Dft,
Combine(CUDA_TYPICAL_MAT_SIZES,
Values(0, DftFlags(cv::DFT_ROWS), DftFlags(cv::DFT_INVERSE))))
{
declare.time(10.0);
const cv::Size size = GET_PARAM(0);
const int flag = GET_PARAM(1);
cv::Mat src(size, CV_32FC2);
declare.in(src, WARMUP_RNG);
if (PERF_RUN_CUDA())
{
const cv::cuda::GpuMat d_src(src);
cv::cuda::GpuMat dst;
TEST_CYCLE() cv::cuda::dft(d_src, dst, size, flag);
CUDA_SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE);
}
else
{
cv::Mat dst;
TEST_CYCLE() cv::dft(src, dst, flag);
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// Convolve
DEF_PARAM_TEST(Sz_KernelSz_Ccorr, cv::Size, int, bool);
PERF_TEST_P(Sz_KernelSz_Ccorr, Convolve,
Combine(CUDA_TYPICAL_MAT_SIZES,
Values(17, 27, 32, 64),
Bool()))
{
declare.time(10.0);
const cv::Size size = GET_PARAM(0);
const int templ_size = GET_PARAM(1);
const bool ccorr = GET_PARAM(2);
const cv::Mat image(size, CV_32FC1);
const cv::Mat templ(templ_size, templ_size, CV_32FC1);
declare.in(image, templ, WARMUP_RNG);
if (PERF_RUN_CUDA())
{
cv::cuda::GpuMat d_image = cv::cuda::createContinuous(size, CV_32FC1);
d_image.upload(image);
cv::cuda::GpuMat d_templ = cv::cuda::createContinuous(templ_size, templ_size, CV_32FC1);
d_templ.upload(templ);
cv::Ptr<cv::cuda::Convolution> convolution = cv::cuda::createConvolution();
cv::cuda::GpuMat dst;
TEST_CYCLE() convolution->convolve(d_image, d_templ, dst, ccorr);
CUDA_SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE);
}
else
{
if (ccorr)
FAIL_NO_CPU();
cv::Mat dst;
TEST_CYCLE() cv::filter2D(image, dst, image.depth(), templ);
CPU_SANITY_CHECK(dst);
}
}
} // namespace