mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 14:19:03 +08:00
eba696a41e
* Remove Inference Engine 2018R3 and 2018R4 * Fix 2018R5
160 lines
5.7 KiB
C++
160 lines
5.7 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
#include "../precomp.hpp"
|
|
#include "../op_inf_engine.hpp"
|
|
|
|
namespace cv
|
|
{
|
|
namespace dnn
|
|
{
|
|
class BlankLayerImpl CV_FINAL : public BlankLayer
|
|
{
|
|
public:
|
|
BlankLayerImpl(const LayerParams& params)
|
|
{
|
|
setParamsFrom(params);
|
|
}
|
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
|
{
|
|
return backendId == DNN_BACKEND_OPENCV ||
|
|
(backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine());
|
|
}
|
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const CV_OVERRIDE
|
|
{
|
|
Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
|
|
return true;
|
|
}
|
|
|
|
#ifdef HAVE_OPENCL
|
|
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
|
|
{
|
|
std::vector<UMat> inputs;
|
|
std::vector<UMat> outputs;
|
|
|
|
inputs_.getUMatVector(inputs);
|
|
outputs_.getUMatVector(outputs);
|
|
|
|
for (int i = 0, n = outputs.size(); i < n; ++i)
|
|
{
|
|
void *src_handle = inputs[i].handle(ACCESS_READ);
|
|
void *dst_handle = outputs[i].handle(ACCESS_WRITE);
|
|
if (src_handle != dst_handle)
|
|
inputs[i].copyTo(outputs[i]);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
|
|
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
|
|
|
std::vector<Mat> inputs, outputs;
|
|
inputs_arr.getMatVector(inputs);
|
|
outputs_arr.getMatVector(outputs);
|
|
|
|
for (int i = 0, n = outputs.size(); i < n; ++i)
|
|
if (outputs[i].data != inputs[i].data)
|
|
inputs[i].copyTo(outputs[i]);
|
|
}
|
|
|
|
#ifdef HAVE_INF_ENGINE
|
|
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >& inputs) CV_OVERRIDE
|
|
{
|
|
InferenceEngine::DataPtr input = infEngineDataNode(inputs[0]);
|
|
CV_Assert(!input->dims.empty());
|
|
|
|
InferenceEngine::Builder::Layer ieLayer(name);
|
|
ieLayer.setName(name);
|
|
if (preferableTarget == DNN_TARGET_MYRIAD)
|
|
{
|
|
ieLayer.setType("Copy");
|
|
}
|
|
else
|
|
{
|
|
ieLayer.setType("Split");
|
|
ieLayer.getParameters()["axis"] = input->dims.size() - 1;
|
|
ieLayer.getParameters()["out_sizes"] = input->dims[0];
|
|
}
|
|
std::vector<size_t> shape(input->dims);
|
|
std::reverse(shape.begin(), shape.end());
|
|
ieLayer.setInputPorts({InferenceEngine::Port(shape)});
|
|
ieLayer.setOutputPorts(std::vector<InferenceEngine::Port>(1));
|
|
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
|
|
}
|
|
#endif // HAVE_INF_ENGINE
|
|
};
|
|
|
|
Ptr<Layer> BlankLayer::create(const LayerParams& params)
|
|
{
|
|
// In case of Caffe's Dropout layer from Faster-RCNN framework,
|
|
// https://github.com/rbgirshick/caffe-fast-rcnn/tree/faster-rcnn
|
|
// return Power layer.
|
|
if (!params.get<bool>("scale_train", true))
|
|
{
|
|
float scale = 1 - params.get<float>("dropout_ratio", 0.5f);
|
|
CV_Assert(scale > 0);
|
|
|
|
LayerParams powerParams;
|
|
powerParams.name = params.name;
|
|
powerParams.type = "Power";
|
|
powerParams.set("scale", scale);
|
|
|
|
return PowerLayer::create(powerParams);
|
|
}
|
|
else
|
|
return Ptr<BlankLayer>(new BlankLayerImpl(params));
|
|
}
|
|
|
|
}
|
|
}
|