opencv/android/android-opencv/jni/yuv420rgb888.s
2011-04-06 14:31:03 +00:00

380 lines
12 KiB
ArmAsm

; YUV-> RGB conversion code Copyright (C) 2008 Robin Watts (robin;wss.co.uk).
;
; Licensed under the GPL. If you need it under another license, contact me
; and ask.
;
; This program is free software ; you can redistribute it and/or modify
; it under the terms of the GNU General Public License as published by
; the Free Software Foundation ; either version 2 of the License, or
; (at your option) any later version.
;
; This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY ; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; GNU General Public License for more details.
;
; You should have received a copy of the GNU General Public License
; along with this program ; if not, write to the Free Software
; Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
;
;
; The algorithm used here is based heavily on one created by Sophie Wilson
; of Acorn/e-14/Broadcomm. Many thanks.
;
; Additional tweaks (in the fast fixup code) are from Paul Gardiner.
;
; The old implementation of YUV -> RGB did:
;
; R = CLAMP((Y-16)*1.164 + 1.596*V)
; G = CLAMP((Y-16)*1.164 - 0.391*U - 0.813*V)
; B = CLAMP((Y-16)*1.164 + 2.018*U )
;
; We're going to bend that here as follows:
;
; R = CLAMP(y + 1.596*V)
; G = CLAMP(y - 0.383*U - 0.813*V)
; B = CLAMP(y + 1.976*U )
;
; where y = 0 for Y <= 16,
; y = ( Y-16)*1.164, for 16 < Y <= 239,
; y = (239-16)*1.164, for 239 < Y
;
; i.e. We clamp Y to the 16 to 239 range (which it is supposed to be in
; anyway). We then pick the B_U factor so that B never exceeds 511. We then
; shrink the G_U factor in line with that to avoid a colour shift as much as
; possible.
;
; We're going to use tables to do it faster, but rather than doing it using
; 5 tables as as the above suggests, we're going to do it using just 3.
;
; We do this by working in parallel within a 32 bit word, and using one
; table each for Y U and V.
;
; Source Y values are 0 to 255, so 0.. 260 after scaling
; Source U values are -128 to 127, so -49.. 49(G), -253..251(B) after
; Source V values are -128 to 127, so -204..203(R), -104..103(G) after
;
; So total summed values:
; -223 <= R <= 481, -173 <= G <= 431, -253 <= B < 511
;
; We need to pack R G and B into a 32 bit word, and because of Bs range we
; need 2 bits above the valid range of B to detect overflow, and another one
; to detect the sense of the overflow. We therefore adopt the following
; representation:
;
; osGGGGGgggggosBBBBBbbbosRRRRRrrr
;
; Each such word breaks down into 3 ranges.
;
; osGGGGGggggg osBBBBBbbb osRRRRRrrr
;
; Thus we have 8 bits for each B and R table entry, and 10 bits for G (good
; as G is the most noticable one). The s bit for each represents the sign,
; and o represents the overflow.
;
; For R and B we pack the table by taking the 11 bit representation of their
; values, and toggling bit 10 in the U and V tables.
;
; For the green case we calculate 4*G (thus effectively using 10 bits for the
; valid range) truncate to 12 bits. We toggle bit 11 in the Y table.
; Theorarm library
; Copyright (C) 2009 Robin Watts for Pinknoise Productions Ltd
AREA |.text|, CODE, READONLY
EXPORT yuv420_2_rgb888
EXPORT yuv420_2_rgb888_PROFILE
; void yuv420_2_rgb565
; uint8_t *dst_ptr
; uint8_t *y_ptr
; uint8_t *u_ptr
; uint8_t *v_ptr
; int width
; int height
; int y_span
; int uv_span
; int dst_span
; int *tables
; int dither
CONST_flags
DCD 0x40080100
yuv420_2_rgb888
; r0 = dst_ptr
; r1 = y_ptr
; r2 = u_ptr
; r3 = v_ptr
; <> = width
; <> = height
; <> = y_span
; <> = uv_span
; <> = dst_span
; <> = y_table
; <> = dither
STMFD r13!,{r4-r11,r14}
LDR r8, [r13,#10*4] ; r8 = height
LDR r10,[r13,#11*4] ; r10= y_span
LDR r9, [r13,#13*4] ; r9 = dst_span
LDR r14,[r13,#14*4] ; r14= y_table
LDR r5, CONST_flags
LDR r11,[r13,#9*4] ; r11= width
ADD r4, r14, #256*4
SUBS r8, r8, #1
BLT end
BEQ trail_row1
yloop1
SUB r8, r8, r11,LSL #16 ; r8 = height-(width<<16)
ADDS r8, r8, #1<<16 ; if (width == 1)
BGE trail_pair1 ; just do 1 column
xloop1
LDRB r11,[r2], #1 ; r11 = u = *u_ptr++
LDRB r12,[r3], #1 ; r12 = v = *v_ptr++
LDRB r7, [r1, r10] ; r7 = y2 = y_ptr[stride]
LDRB r6, [r1], #1 ; r6 = y0 = *y_ptr++
ADD r12,r12,#512
LDR r11,[r4, r11,LSL #2] ; r11 = u = u_table[u]
LDR r12,[r14,r12,LSL #2] ; r12 = v = v_table[v]
LDR r7, [r14,r7, LSL #2] ; r7 = y2 = y_table[y2]
LDR r6, [r14,r6, LSL #2] ; r6 = y0 = y_table[y0]
ADD r11,r11,r12 ; r11 = uv = u+v
ADD r7, r7, r11 ; r7 = y2 + uv
ADD r6, r6, r11 ; r6 = y0 + uv
ANDS r12,r7, r5
TSTEQ r6, r5
BNE fix101
return101
; Store the bottom one first
ADD r12,r0, r9
STRB r7,[r12],#1 ; Store R
MOV r7, r7, ROR #22
STRB r7,[r12],#1 ; Store G
MOV r7, r7, ROR #21
STRB r7,[r12],#1 ; Store B
; Then store the top one
STRB r6,[r0], #1 ; Store R
MOV r6, r6, ROR #22
STRB r6,[r0], #1 ; Store G
LDRB r7, [r1, r10] ; r7 = y3 = y_ptr[stride]
LDRB r12,[r1], #1 ; r12= y1 = *y_ptr++
MOV r6, r6, ROR #21
LDR r7, [r14, r7, LSL #2] ; r7 = y3 = y_table[y2]
LDR r12,[r14, r12,LSL #2] ; r12= y1 = y_table[y0]
STRB r6,[r0], #1 ; Store B
ADD r7, r7, r11 ; r7 = y3 + uv
ADD r6, r12,r11 ; r6 = y1 + uv
ANDS r12,r7, r5
TSTEQ r6, r5
BNE fix102
return102
; Store the bottom one first
ADD r12,r0, r9
STRB r7,[r12],#1 ; Store R
MOV r7, r7, ROR #22
STRB r7,[r12],#1 ; Store G
MOV r7, r7, ROR #21
STRB r7,[r12],#1 ; Store B
; Then store the top one
STRB r6,[r0], #1 ; Store R
MOV r6, r6, ROR #22
STRB r6,[r0], #1 ; Store G
MOV r6, r6, ROR #21
STRB r6,[r0], #1 ; Store B
ADDS r8, r8, #2<<16
BLT xloop1
MOVS r8, r8, LSL #16 ; Clear the top 16 bits of r8
MOV r8, r8, LSR #16 ; If the C bit is clear we still have
BCC trail_pair1 ; 1 more pixel pair to do
end_xloop1
LDR r11,[r13,#9*4] ; r11= width
LDR r12,[r13,#12*4] ; r12= uv_stride
ADD r0, r0, r9, LSL #1
SUB r0, r0, r11,LSL #1
SUB r0, r0, r11
ADD r1, r1, r10,LSL #1
SUB r1, r1, r11
SUB r2, r2, r11,LSR #1
SUB r3, r3, r11,LSR #1
ADD r2, r2, r12
ADD r3, r3, r12
SUBS r8, r8, #2
BGT yloop1
LDMLTFD r13!,{r4-r11,pc}
trail_row1
; We have a row of pixels left to do
SUB r8, r8, r11,LSL #16 ; r8 = height-(width<<16)
ADDS r8, r8, #1<<16 ; if (width == 1)
BGE trail_pix1 ; just do 1 pixel
xloop12
LDRB r11,[r2], #1 ; r11 = u = *u_ptr++
LDRB r12,[r3], #1 ; r12 = v = *v_ptr++
LDRB r6, [r1], #1 ; r6 = y0 = *y_ptr++
LDRB r7, [r1], #1 ; r7 = y1 = *y_ptr++
ADD r12,r12,#512
LDR r11,[r4, r11,LSL #2] ; r11 = u = u_table[u]
LDR r12,[r14,r12,LSL #2] ; r12 = v = v_table[v]
LDR r7, [r14,r7, LSL #2] ; r7 = y1 = y_table[y1]
LDR r6, [r14,r6, LSL #2] ; r6 = y0 = y_table[y0]
ADD r11,r11,r12 ; r11 = uv = u+v
ADD r6, r6, r11 ; r6 = y0 + uv
ADD r7, r7, r11 ; r7 = y1 + uv
ANDS r12,r7, r5
TSTEQ r6, r5
BNE fix104
return104
; Store the bottom one first
STRB r6,[r0], #1 ; Store R
MOV r6, r6, ROR #22
STRB r6,[r0], #1 ; Store G
MOV r6, r6, ROR #21
STRB r6,[r0], #1 ; Store B
; Then store the top one
STRB r7,[r0], #1 ; Store R
MOV r7, r7, ROR #22
STRB r7,[r0], #1 ; Store G
MOV r7, r7, ROR #21
STRB r7,[r0], #1 ; Store B
ADDS r8, r8, #2<<16
BLT xloop12
MOVS r8, r8, LSL #16 ; Clear the top 16 bits of r8
MOV r8, r8, LSR #16 ; If the C bit is clear we still have
BCC trail_pix1 ; 1 more pixel pair to do
end
LDMFD r13!,{r4-r11,pc}
trail_pix1
; We have a single extra pixel to do
LDRB r11,[r2], #1 ; r11 = u = *u_ptr++
LDRB r12,[r3], #1 ; r12 = v = *v_ptr++
LDRB r6, [r1], #1 ; r6 = y0 = *y_ptr++
ADD r12,r12,#512
LDR r11,[r4, r11,LSL #2] ; r11 = u = u_table[u]
LDR r12,[r14,r12,LSL #2] ; r12 = v = v_table[v]
LDR r6, [r14,r6, LSL #2] ; r6 = y0 = y_table[y0]
ADD r11,r11,r12 ; r11 = uv = u+v
ADD r6, r6, r11 ; r6 = y0 + uv
ANDS r12,r6, r5
BNE fix105
return105
STRB r6,[r0], #1 ; Store R
MOV r6, r6, ROR #22
STRB r6,[r0], #1 ; Store G
MOV r6, r6, ROR #21
STRB r6,[r0], #1 ; Store B
LDMFD r13!,{r4-r11,pc}
trail_pair1
; We have a pair of pixels left to do
LDRB r11,[r2] ; r11 = u = *u_ptr++
LDRB r12,[r3] ; r12 = v = *v_ptr++
LDRB r7, [r1, r10] ; r7 = y2 = y_ptr[stride]
LDRB r6, [r1], #1 ; r6 = y0 = *y_ptr++
ADD r12,r12,#512
LDR r11,[r4, r11,LSL #2] ; r11 = u = u_table[u]
LDR r12,[r14,r12,LSL #2] ; r12 = v = v_table[v]
LDR r7, [r14,r7, LSL #2] ; r7 = y2 = y_table[y2]
LDR r6, [r14,r6, LSL #2] ; r6 = y0 = y_table[y0]
ADD r11,r11,r12 ; r11 = uv = u+v
ADD r7, r7, r11 ; r7 = y2 + uv
ADD r6, r6, r11 ; r6 = y0 + uv
ANDS r12,r7, r5
TSTEQ r6, r5
BNE fix103
return103
; Store the bottom one first
ADD r12,r0, r9
STRB r7,[r12],#1 ; Store R
MOV r7, r7, ROR #22
STRB r7,[r12],#1 ; Store G
MOV r7, r7, ROR #21
STRB r7,[r12],#1 ; Store B
; Then store the top one
STRB r6,[r0], #1 ; Store R
MOV r6, r6, ROR #22
STRB r6,[r0], #1 ; Store G
MOV r6, r6, ROR #21
STRB r6,[r0], #1 ; Store B
B end_xloop1
fix101
; r7 and r6 are the values, at least one of which has overflowed
; r12 = r7 & mask = .s......s......s......
SUB r12,r12,r12,LSR #8 ; r12 = ..SSSSSS.SSSSSS.SSSSSS
ORR r7, r7, r12 ; r7 |= ..SSSSSS.SSSSSS.SSSSSS
BIC r12,r5, r7, LSR #1 ; r12 = .o......o......o......
ADD r7, r7, r12,LSR #8 ; r7 = fixed value
AND r12, r6, r5 ; r12 = .S......S......S......
SUB r12,r12,r12,LSR #8 ; r12 = ..SSSSSS.SSSSSS.SSSSSS
ORR r6, r6, r12 ; r6 |= ..SSSSSS.SSSSSS.SSSSSS
BIC r12,r5, r6, LSR #1 ; r12 = .o......o......o......
ADD r6, r6, r12,LSR #8 ; r6 = fixed value
B return101
fix102
; r7 and r6 are the values, at least one of which has overflowed
; r12 = r7 & mask = .s......s......s......
SUB r12,r12,r12,LSR #8 ; r12 = ..SSSSSS.SSSSSS.SSSSSS
ORR r7, r7, r12 ; r7 |= ..SSSSSS.SSSSSS.SSSSSS
BIC r12,r5, r7, LSR #1 ; r12 = .o......o......o......
ADD r7, r7, r12,LSR #8 ; r7 = fixed value
AND r12, r6, r5 ; r12 = .S......S......S......
SUB r12,r12,r12,LSR #8 ; r12 = ..SSSSSS..SSSSS.SSSSSS
ORR r6, r6, r12 ; r6 |= ..SSSSSS..SSSSS.SSSSSS
BIC r12,r5, r6, LSR #1 ; r12 = .o......o......o......
ADD r6, r6, r12,LSR #8 ; r6 = fixed value
B return102
fix103
; r7 and r6 are the values, at least one of which has overflowed
; r12 = r7 & mask = .s......s......s......
SUB r12,r12,r12,LSR #8 ; r12 = ..SSSSSS.SSSSSS.SSSSSS
ORR r7, r7, r12 ; r7 |= ..SSSSSS.SSSSSS.SSSSSS
BIC r12,r5, r7, LSR #1 ; r12 = .o......o......o......
ADD r7, r7, r12,LSR #8 ; r7 = fixed value
AND r12, r6, r5 ; r12 = .S......S......S......
SUB r12,r12,r12,LSR #8 ; r12 = ..SSSSSS.SSSSSS.SSSSSS
ORR r6, r6, r12 ; r6 |= ..SSSSSS.SSSSSS.SSSSSS
BIC r12,r5, r6, LSR #1 ; r12 = .o......o......o......
ADD r6, r6, r12,LSR #8 ; r6 = fixed value
B return103
fix104
; r7 and r6 are the values, at least one of which has overflowed
; r12 = r7 & mask = .s......s......s......
SUB r12,r12,r12,LSR #8 ; r12 = ..SSSSSS.SSSSSS.SSSSSS
ORR r7, r7, r12 ; r7 |= ..SSSSSS.SSSSSS.SSSSSS
BIC r12,r5, r7, LSR #1 ; r12 = .o......o......o......
ADD r7, r7, r12,LSR #8 ; r7 = fixed value
AND r12, r6, r5 ; r12 = .S......S......S......
SUB r12,r12,r12,LSR #8 ; r12 = ..SSSSSS.SSSSSS.SSSSSS
ORR r6, r6, r12 ; r6 |= ..SSSSSS.SSSSSS.SSSSSS
BIC r12,r5, r6, LSR #1 ; r12 = .o......o......o......
ADD r6, r6, r12,LSR #8 ; r6 = fixed value
B return104
fix105
; r6 is the value, which has has overflowed
; r12 = r7 & mask = .s......s......s......
SUB r12,r12,r12,LSR #8 ; r12 = ..SSSSSS.SSSSSS.SSSSSS
ORR r6, r6, r12 ; r6 |= ..SSSSSS.SSSSSS.SSSSSS
BIC r12,r5, r6, LSR #1 ; r12 = .o......o......o......
ADD r6, r6, r12,LSR #8 ; r6 = fixed value
B return105
END