opencv/modules/features2d/test/test_nearestneighbors.cpp

524 lines
16 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include <algorithm>
#include <vector>
#include <iostream>
using namespace cv;
using namespace cv::flann;
//--------------------------------------------------------------------------------
class NearestNeighborTest : public cvtest::BaseTest
{
public:
NearestNeighborTest() {}
protected:
static const int minValue = 0;
static const int maxValue = 1;
static const int dims = 30;
static const int featuresCount = 2000;
static const int K = 1; // * should also test 2nd nn etc.?
virtual void run( int start_from );
virtual void createModel( const Mat& data ) = 0;
virtual int findNeighbors( Mat& points, Mat& neighbors ) = 0;
virtual int checkGetPoins( const Mat& data );
virtual int checkFindBoxed();
virtual int checkFind( const Mat& data );
virtual void releaseModel() = 0;
};
int NearestNeighborTest::checkGetPoins( const Mat& )
{
return cvtest::TS::OK;
}
int NearestNeighborTest::checkFindBoxed()
{
return cvtest::TS::OK;
}
int NearestNeighborTest::checkFind( const Mat& data )
{
int code = cvtest::TS::OK;
int pointsCount = 1000;
float noise = 0.2f;
RNG rng;
Mat points( pointsCount, dims, CV_32FC1 );
Mat results( pointsCount, K, CV_32SC1 );
std::vector<int> fmap( pointsCount );
for( int pi = 0; pi < pointsCount; pi++ )
{
int fi = rng.next() % featuresCount;
fmap[pi] = fi;
for( int d = 0; d < dims; d++ )
points.at<float>(pi, d) = data.at<float>(fi, d) + rng.uniform(0.0f, 1.0f) * noise;
}
code = findNeighbors( points, results );
if( code == cvtest::TS::OK )
{
int correctMatches = 0;
for( int pi = 0; pi < pointsCount; pi++ )
{
if( fmap[pi] == results.at<int>(pi, 0) )
correctMatches++;
}
double correctPerc = correctMatches / (double)pointsCount;
if (correctPerc < .75)
{
ts->printf( cvtest::TS::LOG, "correct_perc = %d\n", correctPerc );
code = cvtest::TS::FAIL_BAD_ACCURACY;
}
}
return code;
}
void NearestNeighborTest::run( int /*start_from*/ ) {
int code = cvtest::TS::OK, tempCode;
Mat desc( featuresCount, dims, CV_32FC1 );
randu( desc, Scalar(minValue), Scalar(maxValue) );
createModel( desc );
tempCode = checkGetPoins( desc );
if( tempCode != cvtest::TS::OK )
{
ts->printf( cvtest::TS::LOG, "bad accuracy of GetPoints \n" );
code = tempCode;
}
tempCode = checkFindBoxed();
if( tempCode != cvtest::TS::OK )
{
ts->printf( cvtest::TS::LOG, "bad accuracy of FindBoxed \n" );
code = tempCode;
}
tempCode = checkFind( desc );
if( tempCode != cvtest::TS::OK )
{
ts->printf( cvtest::TS::LOG, "bad accuracy of Find \n" );
code = tempCode;
}
releaseModel();
ts->set_failed_test_info( code );
}
//--------------------------------------------------------------------------------
class CV_LSHTest : public NearestNeighborTest
{
public:
CV_LSHTest() {}
protected:
virtual void createModel( const Mat& data );
virtual int findNeighbors( Mat& points, Mat& neighbors );
virtual void releaseModel();
struct CvLSH* lsh;
CvMat desc;
};
void CV_LSHTest::createModel( const Mat& data )
{
desc = data;
lsh = cvCreateMemoryLSH( data.cols, data.rows, 70, 20, CV_32FC1 );
cvLSHAdd( lsh, &desc );
}
int CV_LSHTest::findNeighbors( Mat& points, Mat& neighbors )
{
const int emax = 20;
Mat dist( points.rows, neighbors.cols, CV_64FC1);
CvMat _dist = dist, _points = points, _neighbors = neighbors;
cvLSHQuery( lsh, &_points, &_neighbors, &_dist, neighbors.cols, emax );
return cvtest::TS::OK;
}
void CV_LSHTest::releaseModel()
{
cvReleaseLSH( &lsh );
}
//--------------------------------------------------------------------------------
class CV_FeatureTreeTest_C : public NearestNeighborTest
{
public:
CV_FeatureTreeTest_C() {}
protected:
virtual int findNeighbors( Mat& points, Mat& neighbors );
virtual void releaseModel();
CvFeatureTree* tr;
CvMat desc;
};
int CV_FeatureTreeTest_C::findNeighbors( Mat& points, Mat& neighbors )
{
const int emax = 20;
Mat dist( points.rows, neighbors.cols, CV_64FC1);
CvMat _dist = dist, _points = points, _neighbors = neighbors;
cvFindFeatures( tr, &_points, &_neighbors, &_dist, neighbors.cols, emax );
return cvtest::TS::OK;
}
void CV_FeatureTreeTest_C::releaseModel()
{
cvReleaseFeatureTree( tr );
}
//--------------------------------------
class CV_SpillTreeTest_C : public CV_FeatureTreeTest_C
{
public:
CV_SpillTreeTest_C() {}
protected:
virtual void createModel( const Mat& data );
};
void CV_SpillTreeTest_C::createModel( const Mat& data )
{
desc = data;
tr = cvCreateSpillTree( &desc );
}
//--------------------------------------
class CV_KDTreeTest_C : public CV_FeatureTreeTest_C
{
public:
CV_KDTreeTest_C() {}
protected:
virtual void createModel( const Mat& data );
virtual int checkFindBoxed();
};
void CV_KDTreeTest_C::createModel( const Mat& data )
{
desc = data;
tr = cvCreateKDTree( &desc );
}
int CV_KDTreeTest_C::checkFindBoxed()
{
Mat min(1, dims, CV_32FC1 ), max(1, dims, CV_32FC1 ), indices( 1, 1, CV_32SC1 );
float l = minValue, r = maxValue;
min.setTo(Scalar(l)), max.setTo(Scalar(r));
CvMat _min = min, _max = max, _indices = indices;
// TODO check indices
if( cvFindFeaturesBoxed( tr, &_min, &_max, &_indices ) != featuresCount )
return cvtest::TS::FAIL_BAD_ACCURACY;
return cvtest::TS::OK;
}
//--------------------------------------------------------------------------------
class CV_KDTreeTest_CPP : public NearestNeighborTest
{
public:
CV_KDTreeTest_CPP() {}
protected:
virtual void createModel( const Mat& data );
virtual int checkGetPoins( const Mat& data );
virtual int findNeighbors( Mat& points, Mat& neighbors );
virtual int checkFindBoxed();
virtual void releaseModel();
KDTree* tr;
};
void CV_KDTreeTest_CPP::createModel( const Mat& data )
{
tr = new KDTree( data, false );
}
int CV_KDTreeTest_CPP::checkGetPoins( const Mat& data )
{
Mat res1( data.size(), data.type() ),
res2( data.size(), data.type() ),
res3( data.size(), data.type() );
Mat idxs( 1, data.rows, CV_32SC1 );
for( int pi = 0; pi < data.rows; pi++ )
{
idxs.at<int>(0, pi) = pi;
// 1st way
const float* point = tr->getPoint(pi);
for( int di = 0; di < data.cols; di++ )
res1.at<float>(pi, di) = point[di];
}
// 2nd way
tr->getPoints( idxs.ptr<int>(0), data.rows, res2 );
// 3d way
tr->getPoints( idxs, res3 );
if( norm( res1, data, NORM_L1) != 0 ||
norm( res2, data, NORM_L1) != 0 ||
norm( res3, data, NORM_L1) != 0)
return cvtest::TS::FAIL_BAD_ACCURACY;
return cvtest::TS::OK;
}
int CV_KDTreeTest_CPP::checkFindBoxed()
{
vector<float> min( dims, minValue), max(dims, maxValue);
vector<int> indices;
tr->findOrthoRange( &min[0], &max[0], &indices );
// TODO check indices
if( (int)indices.size() != featuresCount)
return cvtest::TS::FAIL_BAD_ACCURACY;
return cvtest::TS::OK;
}
int CV_KDTreeTest_CPP::findNeighbors( Mat& points, Mat& neighbors )
{
const int emax = 20;
Mat neighbors2( neighbors.size(), CV_32SC1 );
int j;
vector<float> min(points.cols, minValue);
vector<float> max(points.cols, maxValue);
for( int pi = 0; pi < points.rows; pi++ )
{
// 1st way
tr->findNearest( points.ptr<float>(pi), neighbors.cols, emax, neighbors.ptr<int>(pi) );
// 2nd way
vector<int> neighborsIdx2( neighbors2.cols, 0 );
tr->findNearest( points.ptr<float>(pi), neighbors2.cols, emax, &neighborsIdx2 );
vector<int>::const_iterator it2 = neighborsIdx2.begin();
for( j = 0; it2 != neighborsIdx2.end(); ++it2, j++ )
neighbors2.at<int>(pi,j) = *it2;
}
// compare results
if( norm( neighbors, neighbors2, NORM_L1 ) != 0 )
return cvtest::TS::FAIL_BAD_ACCURACY;
return cvtest::TS::OK;
}
void CV_KDTreeTest_CPP::releaseModel()
{
delete tr;
}
//--------------------------------------------------------------------------------
class CV_FlannTest : public NearestNeighborTest
{
public:
CV_FlannTest() {}
protected:
void createIndex( const Mat& data, const IndexParams& params );
int knnSearch( Mat& points, Mat& neighbors );
int radiusSearch( Mat& points, Mat& neighbors );
virtual void releaseModel();
Index* index;
};
void CV_FlannTest::createIndex( const Mat& data, const IndexParams& params )
{
index = new Index( data, params );
}
int CV_FlannTest::knnSearch( Mat& points, Mat& neighbors )
{
Mat dist( points.rows, neighbors.cols, CV_32FC1);
int knn = 1, j;
// 1st way
index->knnSearch( points, neighbors, dist, knn, SearchParams() );
// 2nd way
Mat neighbors1( neighbors.size(), CV_32SC1 );
for( int i = 0; i < points.rows; i++ )
{
float* fltPtr = points.ptr<float>(i);
vector<float> query( fltPtr, fltPtr + points.cols );
vector<int> indices( neighbors1.cols, 0 );
vector<float> dists( dist.cols, 0 );
index->knnSearch( query, indices, dists, knn, SearchParams() );
vector<int>::const_iterator it = indices.begin();
for( j = 0; it != indices.end(); ++it, j++ )
neighbors1.at<int>(i,j) = *it;
}
// compare results
if( norm( neighbors, neighbors1, NORM_L1 ) != 0 )
return cvtest::TS::FAIL_BAD_ACCURACY;
return cvtest::TS::OK;
}
int CV_FlannTest::radiusSearch( Mat& points, Mat& neighbors )
{
Mat dist( 1, neighbors.cols, CV_32FC1);
Mat neighbors1( neighbors.size(), CV_32SC1 );
float radius = 10.0f;
int j;
// radiusSearch can only search one feature at a time for range search
for( int i = 0; i < points.rows; i++ )
{
// 1st way
Mat p( 1, points.cols, CV_32FC1, points.ptr<float>(i) ),
n( 1, neighbors.cols, CV_32SC1, neighbors.ptr<int>(i) );
index->radiusSearch( p, n, dist, radius, SearchParams() );
// 2nd way
float* fltPtr = points.ptr<float>(i);
vector<float> query( fltPtr, fltPtr + points.cols );
vector<int> indices( neighbors1.cols, 0 );
vector<float> dists( dist.cols, 0 );
index->radiusSearch( query, indices, dists, radius, SearchParams() );
vector<int>::const_iterator it = indices.begin();
for( j = 0; it != indices.end(); ++it, j++ )
neighbors1.at<int>(i,j) = *it;
}
// compare results
if( norm( neighbors, neighbors1, NORM_L1 ) != 0 )
return cvtest::TS::FAIL_BAD_ACCURACY;
return cvtest::TS::OK;
}
void CV_FlannTest::releaseModel()
{
delete index;
}
//---------------------------------------
class CV_FlannLinearIndexTest : public CV_FlannTest
{
public:
CV_FlannLinearIndexTest() {}
protected:
virtual void createModel( const Mat& data ) { createIndex( data, LinearIndexParams() ); }
virtual int findNeighbors( Mat& points, Mat& neighbors ) { return knnSearch( points, neighbors ); }
};
//---------------------------------------
class CV_FlannKMeansIndexTest : public CV_FlannTest
{
public:
CV_FlannKMeansIndexTest() {}
protected:
virtual void createModel( const Mat& data ) { createIndex( data, KMeansIndexParams() ); }
virtual int findNeighbors( Mat& points, Mat& neighbors ) { return radiusSearch( points, neighbors ); }
};
//---------------------------------------
class CV_FlannKDTreeIndexTest : public CV_FlannTest
{
public:
CV_FlannKDTreeIndexTest() {}
protected:
virtual void createModel( const Mat& data ) { createIndex( data, KDTreeIndexParams() ); }
virtual int findNeighbors( Mat& points, Mat& neighbors ) { return radiusSearch( points, neighbors ); }
};
//----------------------------------------
class CV_FlannCompositeIndexTest : public CV_FlannTest
{
public:
CV_FlannCompositeIndexTest() {}
protected:
virtual void createModel( const Mat& data ) { createIndex( data, CompositeIndexParams() ); }
virtual int findNeighbors( Mat& points, Mat& neighbors ) { return knnSearch( points, neighbors ); }
};
//----------------------------------------
class CV_FlannAutotunedIndexTest : public CV_FlannTest
{
public:
CV_FlannAutotunedIndexTest() {}
protected:
virtual void createModel( const Mat& data ) { createIndex( data, AutotunedIndexParams() ); }
virtual int findNeighbors( Mat& points, Mat& neighbors ) { return knnSearch( points, neighbors ); }
};
//----------------------------------------
class CV_FlannSavedIndexTest : public CV_FlannTest
{
public:
CV_FlannSavedIndexTest() {}
protected:
virtual void createModel( const Mat& data );
virtual int findNeighbors( Mat& points, Mat& neighbors ) { return knnSearch( points, neighbors ); }
};
void CV_FlannSavedIndexTest::createModel(const cv::Mat &data)
{
switch ( cvtest::randInt(ts->get_rng()) % 2 )
{
//case 0: createIndex( data, LinearIndexParams() ); break; // nothing to save for linear search
case 0: createIndex( data, KMeansIndexParams() ); break;
case 1: createIndex( data, KDTreeIndexParams() ); break;
//case 2: createIndex( data, CompositeIndexParams() ); break; // nothing to save for linear search
//case 2: createIndex( data, AutotunedIndexParams() ); break; // possible linear index !
default: assert(0);
}
char filename[50];
tmpnam( filename );
if(filename[0] == '\\') filename[0] = '_';
index->save( filename );
createIndex( data, SavedIndexParams(filename));
remove( filename );
}
TEST(Features2d_LSH, regression) { CV_LSHTest test; test.safe_run(); }
TEST(Features2d_SpillTree, regression) { CV_SpillTreeTest_C test; test.safe_run(); }
TEST(Features2d_KDTree_C, regression) { CV_KDTreeTest_C test; test.safe_run(); }
TEST(Features2d_KDTree_CPP, regression) { CV_KDTreeTest_CPP test; test.safe_run(); }
TEST(Features2d_FLANN_Linear, regression) { CV_FlannLinearIndexTest test; test.safe_run(); }
TEST(Features2d_FLANN_KMeans, regression) { CV_FlannKMeansIndexTest test; test.safe_run(); }
TEST(Features2d_FLANN_KDTree, regression) { CV_FlannKDTreeIndexTest test; test.safe_run(); }
TEST(Features2d_FLANN_Composite, regression) { CV_FlannCompositeIndexTest test; test.safe_run(); }
TEST(Features2d_FLANN_Auto, regression) { CV_FlannAutotunedIndexTest test; test.safe_run(); }
TEST(Features2d_FLANN_Saved, regression) { CV_FlannSavedIndexTest test; test.safe_run(); }