mirror of
https://github.com/opencv/opencv.git
synced 2025-01-07 11:41:48 +08:00
454 lines
17 KiB
C++
454 lines
17 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include "epnp.h"
|
|
#include "p3p.h"
|
|
#include "opencv2/calib3d/calib3d_c.h"
|
|
|
|
#include <iostream>
|
|
using namespace cv;
|
|
|
|
bool cv::solvePnP( InputArray _opoints, InputArray _ipoints,
|
|
InputArray _cameraMatrix, InputArray _distCoeffs,
|
|
OutputArray _rvec, OutputArray _tvec, bool useExtrinsicGuess, int flags )
|
|
{
|
|
Mat opoints = _opoints.getMat(), ipoints = _ipoints.getMat();
|
|
int npoints = std::max(opoints.checkVector(3, CV_32F), opoints.checkVector(3, CV_64F));
|
|
CV_Assert( npoints >= 0 && npoints == std::max(ipoints.checkVector(2, CV_32F), ipoints.checkVector(2, CV_64F)) );
|
|
_rvec.create(3, 1, CV_64F);
|
|
_tvec.create(3, 1, CV_64F);
|
|
Mat cameraMatrix = _cameraMatrix.getMat(), distCoeffs = _distCoeffs.getMat();
|
|
|
|
if (flags == EPNP)
|
|
{
|
|
cv::Mat undistortedPoints;
|
|
cv::undistortPoints(ipoints, undistortedPoints, cameraMatrix, distCoeffs);
|
|
epnp PnP(cameraMatrix, opoints, undistortedPoints);
|
|
|
|
cv::Mat R, rvec = _rvec.getMat(), tvec = _tvec.getMat();
|
|
PnP.compute_pose(R, tvec);
|
|
cv::Rodrigues(R, rvec);
|
|
return true;
|
|
}
|
|
else if (flags == P3P)
|
|
{
|
|
CV_Assert( npoints == 4);
|
|
cv::Mat undistortedPoints;
|
|
cv::undistortPoints(ipoints, undistortedPoints, cameraMatrix, distCoeffs);
|
|
p3p P3Psolver(cameraMatrix);
|
|
|
|
cv::Mat R, rvec = _rvec.getMat(), tvec = _tvec.getMat();
|
|
bool result = P3Psolver.solve(R, tvec, opoints, undistortedPoints);
|
|
if (result)
|
|
cv::Rodrigues(R, rvec);
|
|
return result;
|
|
}
|
|
else if (flags == ITERATIVE)
|
|
{
|
|
CvMat c_objectPoints = opoints, c_imagePoints = ipoints;
|
|
CvMat c_cameraMatrix = cameraMatrix, c_distCoeffs = distCoeffs;
|
|
CvMat c_rvec = _rvec.getMat(), c_tvec = _tvec.getMat();
|
|
cvFindExtrinsicCameraParams2(&c_objectPoints, &c_imagePoints, &c_cameraMatrix,
|
|
c_distCoeffs.rows*c_distCoeffs.cols ? &c_distCoeffs : 0,
|
|
&c_rvec, &c_tvec, useExtrinsicGuess );
|
|
return true;
|
|
}
|
|
else
|
|
CV_Error(CV_StsBadArg, "The flags argument must be one of CV_ITERATIVE, CV_P3P or CV_EPNP");
|
|
return false;
|
|
}
|
|
|
|
namespace cv
|
|
{
|
|
namespace pnpransac
|
|
{
|
|
const int MIN_POINTS_COUNT = 4;
|
|
|
|
static void project3dPoints(const Mat& points, const Mat& rvec, const Mat& tvec, Mat& modif_points)
|
|
{
|
|
modif_points.create(1, points.cols, CV_32FC3);
|
|
Mat R(3, 3, CV_64FC1);
|
|
Rodrigues(rvec, R);
|
|
Mat transformation(3, 4, CV_64F);
|
|
Mat r = transformation.colRange(0, 3);
|
|
R.copyTo(r);
|
|
Mat t = transformation.colRange(3, 4);
|
|
tvec.copyTo(t);
|
|
transform(points, modif_points, transformation);
|
|
}
|
|
|
|
struct CameraParameters
|
|
{
|
|
void init(Mat _intrinsics, Mat _distCoeffs)
|
|
{
|
|
_intrinsics.copyTo(intrinsics);
|
|
_distCoeffs.copyTo(distortion);
|
|
}
|
|
|
|
Mat intrinsics;
|
|
Mat distortion;
|
|
};
|
|
|
|
struct Parameters
|
|
{
|
|
int iterationsCount;
|
|
float reprojectionError;
|
|
int minInliersCount;
|
|
bool useExtrinsicGuess;
|
|
int flags;
|
|
CameraParameters camera;
|
|
};
|
|
|
|
static void pnpTask(const std::vector<char>& pointsMask, const Mat& objectPoints, const Mat& imagePoints,
|
|
const Parameters& params, std::vector<int>& inliers, Mat& rvec, Mat& tvec,
|
|
const Mat& rvecInit, const Mat& tvecInit, Mutex& resultsMutex)
|
|
{
|
|
Mat modelObjectPoints(1, MIN_POINTS_COUNT, CV_32FC3), modelImagePoints(1, MIN_POINTS_COUNT, CV_32FC2);
|
|
for (int i = 0, colIndex = 0; i < (int)pointsMask.size(); i++)
|
|
{
|
|
if (pointsMask[i])
|
|
{
|
|
Mat colModelImagePoints = modelImagePoints(Rect(colIndex, 0, 1, 1));
|
|
imagePoints.col(i).copyTo(colModelImagePoints);
|
|
Mat colModelObjectPoints = modelObjectPoints(Rect(colIndex, 0, 1, 1));
|
|
objectPoints.col(i).copyTo(colModelObjectPoints);
|
|
colIndex = colIndex+1;
|
|
}
|
|
}
|
|
|
|
//filter same 3d points, hang in solvePnP
|
|
double eps = 1e-10;
|
|
int num_same_points = 0;
|
|
for (int i = 0; i < MIN_POINTS_COUNT; i++)
|
|
for (int j = i + 1; j < MIN_POINTS_COUNT; j++)
|
|
{
|
|
if (norm(modelObjectPoints.at<Vec3f>(0, i) - modelObjectPoints.at<Vec3f>(0, j)) < eps)
|
|
num_same_points++;
|
|
}
|
|
if (num_same_points > 0)
|
|
return;
|
|
|
|
Mat localRvec, localTvec;
|
|
rvecInit.copyTo(localRvec);
|
|
tvecInit.copyTo(localTvec);
|
|
|
|
solvePnP(modelObjectPoints, modelImagePoints, params.camera.intrinsics, params.camera.distortion, localRvec, localTvec,
|
|
params.useExtrinsicGuess, params.flags);
|
|
|
|
|
|
std::vector<Point2f> projected_points;
|
|
projected_points.resize(objectPoints.cols);
|
|
projectPoints(objectPoints, localRvec, localTvec, params.camera.intrinsics, params.camera.distortion, projected_points);
|
|
|
|
Mat rotatedPoints;
|
|
project3dPoints(objectPoints, localRvec, localTvec, rotatedPoints);
|
|
|
|
std::vector<int> localInliers;
|
|
for (int i = 0; i < objectPoints.cols; i++)
|
|
{
|
|
Point2f p(imagePoints.at<Vec2f>(0, i)[0], imagePoints.at<Vec2f>(0, i)[1]);
|
|
if ((norm(p - projected_points[i]) < params.reprojectionError)
|
|
&& (rotatedPoints.at<Vec3f>(0, i)[2] > 0)) //hack
|
|
{
|
|
localInliers.push_back(i);
|
|
}
|
|
}
|
|
|
|
if (localInliers.size() > inliers.size())
|
|
{
|
|
resultsMutex.lock();
|
|
|
|
inliers.clear();
|
|
inliers.resize(localInliers.size());
|
|
memcpy(&inliers[0], &localInliers[0], sizeof(int) * localInliers.size());
|
|
localRvec.copyTo(rvec);
|
|
localTvec.copyTo(tvec);
|
|
|
|
resultsMutex.unlock();
|
|
}
|
|
}
|
|
|
|
class PnPSolver
|
|
{
|
|
public:
|
|
void operator()( const BlockedRange& r ) const
|
|
{
|
|
std::vector<char> pointsMask(objectPoints.cols, 0);
|
|
memset(&pointsMask[0], 1, MIN_POINTS_COUNT );
|
|
for( int i=r.begin(); i!=r.end(); ++i )
|
|
{
|
|
generateVar(pointsMask);
|
|
pnpTask(pointsMask, objectPoints, imagePoints, parameters,
|
|
inliers, rvec, tvec, initRvec, initTvec, syncMutex);
|
|
if ((int)inliers.size() >= parameters.minInliersCount)
|
|
{
|
|
#ifdef HAVE_TBB
|
|
tbb::task::self().cancel_group_execution();
|
|
#else
|
|
break;
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
PnPSolver(const Mat& _objectPoints, const Mat& _imagePoints, const Parameters& _parameters,
|
|
Mat& _rvec, Mat& _tvec, std::vector<int>& _inliers):
|
|
objectPoints(_objectPoints), imagePoints(_imagePoints), parameters(_parameters),
|
|
rvec(_rvec), tvec(_tvec), inliers(_inliers)
|
|
{
|
|
rvec.copyTo(initRvec);
|
|
tvec.copyTo(initTvec);
|
|
|
|
generator.state = theRNG().state; //to control it somehow...
|
|
}
|
|
private:
|
|
PnPSolver& operator=(const PnPSolver&);
|
|
|
|
const Mat& objectPoints;
|
|
const Mat& imagePoints;
|
|
const Parameters& parameters;
|
|
Mat &rvec, &tvec;
|
|
std::vector<int>& inliers;
|
|
Mat initRvec, initTvec;
|
|
|
|
static RNG generator;
|
|
static Mutex syncMutex;
|
|
|
|
void generateVar(std::vector<char>& mask) const
|
|
{
|
|
int size = (int)mask.size();
|
|
for (int i = 0; i < size; i++)
|
|
{
|
|
int i1 = generator.uniform(0, size);
|
|
int i2 = generator.uniform(0, size);
|
|
char curr = mask[i1];
|
|
mask[i1] = mask[i2];
|
|
mask[i2] = curr;
|
|
}
|
|
}
|
|
};
|
|
|
|
Mutex PnPSolver::syncMutex;
|
|
RNG PnPSolver::generator;
|
|
|
|
}
|
|
}
|
|
|
|
class PnPRansacCallback : public PointSetRegistrator::Callback
|
|
{
|
|
public:
|
|
bool checkSubset( InputArray _ms1, InputArray _ms2, int count ) const
|
|
{
|
|
// which kind of checking??
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Pre: True */
|
|
/* Post: compute _model with given points an eturn number of found models */
|
|
int runKernel( InputArray _m1, InputArray _m2, OutputArray _model ) const
|
|
{
|
|
Mat opoints = _m1.getMat(), ipoints = _m2.getMat();
|
|
|
|
Mat cameraMatrix = _model.getMat(0);
|
|
Mat distCoeffs = _model.getMat(1);
|
|
Mat rvec = _model.getMat(2);
|
|
Mat tvec = _model.getMat(3);
|
|
int flags = _model.getMat(4).at<int>(0);
|
|
|
|
bool useExtrinsicGuess = true;
|
|
|
|
bool correspondence = cv::solvePnP( opoints, ipoints,
|
|
cameraMatrix, distCoeffs, rvec, tvec, useExtrinsicGuess, flags );
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Pre: True */
|
|
/* Post: fill _err with projection errors */
|
|
void computeError( InputArray _m1, InputArray _m2, InputArray _model, OutputArray _err ) const
|
|
{
|
|
|
|
Mat opoints = _m1.getMat(), ipoints = _m2.getMat();
|
|
|
|
Mat cameraMatrix = _model.getMat(0);
|
|
Mat distCoeffs = _model.getMat(1);
|
|
Mat rvec = _model.getMat(2);
|
|
Mat tvec = _model.getMat(3);
|
|
|
|
int i, count = opoints.cols;
|
|
|
|
Mat projpoints(count, 2, CV_64FC1);
|
|
cv::projectPoints(opoints, rvec, tvec, cameraMatrix, distCoeffs, projpoints);
|
|
|
|
const Point2f* ipoints_ptr = ipoints.ptr<Point2f>();
|
|
const Point2f* projpoints_ptr = projpoints.ptr<Point2f>();
|
|
|
|
_err.create(count, 1, CV_64FC1);
|
|
float* err = _err.getMat().ptr<float>();
|
|
|
|
for ( i = 0; i < count; ++i)
|
|
err[i] = cv::norm( ipoints_ptr[i] - projpoints_ptr[i] );
|
|
|
|
}
|
|
};
|
|
|
|
void cv::solvePnPRansac(InputArray _opoints, InputArray _ipoints,
|
|
InputArray _cameraMatrix, InputArray _distCoeffs,
|
|
OutputArray _rvec, OutputArray _tvec, bool useExtrinsicGuess,
|
|
int iterationsCount, float reprojectionError, int minInliersCount,
|
|
OutputArray _inliers, int flags)
|
|
{
|
|
// NO CHANGES
|
|
Mat opoints = _opoints.getMat(), ipoints = _ipoints.getMat();
|
|
Mat cameraMatrix = _cameraMatrix.getMat(), distCoeffs = _distCoeffs.getMat();
|
|
|
|
CV_Assert(opoints.isContinuous());
|
|
CV_Assert(opoints.depth() == CV_32F);
|
|
CV_Assert((opoints.rows == 1 && opoints.channels() == 3) || opoints.cols*opoints.channels() == 3);
|
|
CV_Assert(ipoints.isContinuous());
|
|
CV_Assert(ipoints.depth() == CV_32F);
|
|
CV_Assert((ipoints.rows == 1 && ipoints.channels() == 2) || ipoints.cols*ipoints.channels() == 2);
|
|
|
|
_rvec.create(3, 1, CV_64FC1);
|
|
_tvec.create(3, 1, CV_64FC1);
|
|
Mat rvec = _rvec.getMat();
|
|
Mat tvec = _tvec.getMat();
|
|
|
|
Mat objectPoints = opoints.reshape(3, 1), imagePoints = ipoints.reshape(2, 1);
|
|
|
|
if (minInliersCount <= 0)
|
|
minInliersCount = objectPoints.cols;
|
|
cv::pnpransac::Parameters params;
|
|
params.iterationsCount = iterationsCount; // maxIters
|
|
params.minInliersCount = minInliersCount;
|
|
params.reprojectionError = reprojectionError; // threshold
|
|
params.useExtrinsicGuess = useExtrinsicGuess;
|
|
params.camera.init(cameraMatrix, distCoeffs);
|
|
params.flags = flags;
|
|
// END NO CHANGES
|
|
|
|
cv::Mat flag(1, 1, CV_8UC1);
|
|
flag.at<int>(0) = params.flags;
|
|
|
|
// Embed input model to a Mat
|
|
std::vector<cv::Mat> _model;
|
|
|
|
_model.push_back(_cameraMatrix.getMat()); // 3x3
|
|
_model.push_back(_distCoeffs.getMat()); // 4x1
|
|
_model.push_back(_rvec.getMat()); // 3x1
|
|
_model.push_back(_tvec.getMat()); // 3x1
|
|
_model.push_back(flag); // 1x1
|
|
|
|
cv::Mat local_inliers;
|
|
|
|
Ptr<PointSetRegistrator::Callback> cb = makePtr<PnPRansacCallback>(); // pointer to callback
|
|
|
|
int model_points = 7; // number of model points. From fundamentalMatrix, must change
|
|
double param1 = params.reprojectionError ; // reprojection error
|
|
double param2 = 0.99; // confidence
|
|
int param3 = params.iterationsCount; // number maximum iterations
|
|
|
|
// call Ransac
|
|
|
|
// NO COMPILE, IT DOESN'T LIKE vector<Mat> in run
|
|
int result = createRANSACPointSetRegistrator(cb, model_points, param1, param2, param3)->run(objectPoints, imagePoints, _model, local_inliers);
|
|
|
|
_rvec.assign(_model.at<cv::Mat>(2)); // output rotation vector
|
|
_tvec.assign(_model.at<cv::Mat>(3)); // output translation vector
|
|
|
|
// output inliers vector
|
|
int count = 0;
|
|
for (int i = 0; i < local_inliers.rows; ++i)
|
|
{
|
|
if(local_inliers.at<int>(i) == 1)
|
|
{
|
|
cv::Mat & inliers = _inliers.getMat().at<int>(count) = i;
|
|
count++;
|
|
}
|
|
}
|
|
|
|
// OLD IMPLEMENTATION
|
|
|
|
/*std::vector<int> localInliers;
|
|
Mat localRvec, localTvec;
|
|
rvec.copyTo(localRvec);
|
|
tvec.copyTo(localTvec);
|
|
|
|
if (objectPoints.cols >= pnpransac::MIN_POINTS_COUNT)
|
|
{
|
|
parallel_for(BlockedRange(0,iterationsCount), cv::pnpransac::PnPSolver(objectPoints, imagePoints, params,
|
|
localRvec, localTvec, localInliers));
|
|
}
|
|
|
|
if (localInliers.size() >= (size_t)pnpransac::MIN_POINTS_COUNT)
|
|
{
|
|
if (flags != P3P)
|
|
{
|
|
int i, pointsCount = (int)localInliers.size();
|
|
Mat inlierObjectPoints(1, pointsCount, CV_32FC3), inlierImagePoints(1, pointsCount, CV_32FC2);
|
|
for (i = 0; i < pointsCount; i++)
|
|
{
|
|
int index = localInliers[i];
|
|
Mat colInlierImagePoints = inlierImagePoints(Rect(i, 0, 1, 1));
|
|
imagePoints.col(index).copyTo(colInlierImagePoints);
|
|
Mat colInlierObjectPoints = inlierObjectPoints(Rect(i, 0, 1, 1));
|
|
objectPoints.col(index).copyTo(colInlierObjectPoints);
|
|
}
|
|
solvePnP(inlierObjectPoints, inlierImagePoints, params.camera.intrinsics, params.camera.distortion, localRvec, localTvec, true, flags);
|
|
}
|
|
localRvec.copyTo(rvec);
|
|
localTvec.copyTo(tvec);
|
|
if (_inliers.needed())
|
|
Mat(localInliers).copyTo(_inliers);
|
|
}
|
|
else
|
|
{
|
|
tvec.setTo(Scalar(0));
|
|
Mat R = Mat::eye(3, 3, CV_64F);
|
|
Rodrigues(R, rvec);
|
|
if( _inliers.needed() )
|
|
_inliers.release();
|
|
}*/
|
|
return;
|
|
}
|