mirror of
https://github.com/opencv/opencv.git
synced 2024-12-03 08:19:52 +08:00
0c7663eb3b
Conflicts: modules/core/include/opencv2/core/cuda.hpp modules/cudacodec/src/thread.cpp modules/cudacodec/src/thread.hpp modules/superres/perf/perf_superres.cpp modules/superres/src/btv_l1_cuda.cpp modules/superres/src/optical_flow.cpp modules/videostab/src/global_motion.cpp modules/videostab/src/inpainting.cpp samples/cpp/stitching_detailed.cpp samples/cpp/videostab.cpp samples/gpu/stereo_multi.cpp
837 lines
23 KiB
C++
837 lines
23 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include "opencv2/videostab/global_motion.hpp"
|
|
#include "opencv2/videostab/ring_buffer.hpp"
|
|
#include "opencv2/videostab/outlier_rejection.hpp"
|
|
#include "opencv2/opencv_modules.hpp"
|
|
#include "clp.hpp"
|
|
|
|
#ifdef HAVE_OPENCV_CUDA
|
|
# include "opencv2/cuda.hpp"
|
|
#endif
|
|
|
|
namespace cv
|
|
{
|
|
namespace videostab
|
|
{
|
|
|
|
// does isotropic normalization
|
|
static Mat normalizePoints(int npoints, Point2f *points)
|
|
{
|
|
float cx = 0.f, cy = 0.f;
|
|
for (int i = 0; i < npoints; ++i)
|
|
{
|
|
cx += points[i].x;
|
|
cy += points[i].y;
|
|
}
|
|
cx /= npoints;
|
|
cy /= npoints;
|
|
|
|
float d = 0.f;
|
|
for (int i = 0; i < npoints; ++i)
|
|
{
|
|
points[i].x -= cx;
|
|
points[i].y -= cy;
|
|
d += std::sqrt(sqr(points[i].x) + sqr(points[i].y));
|
|
}
|
|
d /= npoints;
|
|
|
|
float s = std::sqrt(2.f) / d;
|
|
for (int i = 0; i < npoints; ++i)
|
|
{
|
|
points[i].x *= s;
|
|
points[i].y *= s;
|
|
}
|
|
|
|
Mat_<float> T = Mat::eye(3, 3, CV_32F);
|
|
T(0,0) = T(1,1) = s;
|
|
T(0,2) = -cx*s;
|
|
T(1,2) = -cy*s;
|
|
return T;
|
|
}
|
|
|
|
|
|
static Mat estimateGlobMotionLeastSquaresTranslation(
|
|
int npoints, Point2f *points0, Point2f *points1, float *rmse)
|
|
{
|
|
Mat_<float> M = Mat::eye(3, 3, CV_32F);
|
|
for (int i = 0; i < npoints; ++i)
|
|
{
|
|
M(0,2) += points1[i].x - points0[i].x;
|
|
M(1,2) += points1[i].y - points0[i].y;
|
|
}
|
|
M(0,2) /= npoints;
|
|
M(1,2) /= npoints;
|
|
|
|
if (rmse)
|
|
{
|
|
*rmse = 0;
|
|
for (int i = 0; i < npoints; ++i)
|
|
*rmse += sqr(points1[i].x - points0[i].x - M(0,2)) +
|
|
sqr(points1[i].y - points0[i].y - M(1,2));
|
|
*rmse = std::sqrt(*rmse / npoints);
|
|
}
|
|
|
|
return M;
|
|
}
|
|
|
|
|
|
static Mat estimateGlobMotionLeastSquaresTranslationAndScale(
|
|
int npoints, Point2f *points0, Point2f *points1, float *rmse)
|
|
{
|
|
Mat_<float> T0 = normalizePoints(npoints, points0);
|
|
Mat_<float> T1 = normalizePoints(npoints, points1);
|
|
|
|
Mat_<float> A(2*npoints, 3), b(2*npoints, 1);
|
|
float *a0, *a1;
|
|
Point2f p0, p1;
|
|
|
|
for (int i = 0; i < npoints; ++i)
|
|
{
|
|
a0 = A[2*i];
|
|
a1 = A[2*i+1];
|
|
p0 = points0[i];
|
|
p1 = points1[i];
|
|
a0[0] = p0.x; a0[1] = 1; a0[2] = 0;
|
|
a1[0] = p0.y; a1[1] = 0; a1[2] = 1;
|
|
b(2*i,0) = p1.x;
|
|
b(2*i+1,0) = p1.y;
|
|
}
|
|
|
|
Mat_<float> sol;
|
|
solve(A, b, sol, DECOMP_NORMAL | DECOMP_LU);
|
|
|
|
if (rmse)
|
|
*rmse = static_cast<float>(norm(A*sol, b, NORM_L2) / std::sqrt(static_cast<double>(npoints)));
|
|
|
|
Mat_<float> M = Mat::eye(3, 3, CV_32F);
|
|
M(0,0) = M(1,1) = sol(0,0);
|
|
M(0,2) = sol(1,0);
|
|
M(1,2) = sol(2,0);
|
|
|
|
return T1.inv() * M * T0;
|
|
}
|
|
|
|
static Mat estimateGlobMotionLeastSquaresRotation(
|
|
int npoints, Point2f *points0, Point2f *points1, float *rmse)
|
|
{
|
|
Point2f p0, p1;
|
|
float A(0), B(0);
|
|
for(int i=0; i<npoints; ++i)
|
|
{
|
|
p0 = points0[i];
|
|
p1 = points1[i];
|
|
|
|
A += p0.x*p1.x + p0.y*p1.y;
|
|
B += p0.x*p1.y - p1.x*p0.y;
|
|
}
|
|
|
|
// A*sin(alpha) + B*cos(alpha) = 0
|
|
float C = std::sqrt(A*A + B*B);
|
|
Mat_<float> M = Mat::eye(3, 3, CV_32F);
|
|
if ( C != 0 )
|
|
{
|
|
float sinAlpha = - B / C;
|
|
float cosAlpha = A / C;
|
|
|
|
M(0,0) = cosAlpha;
|
|
M(1,1) = M(0,0);
|
|
M(0,1) = sinAlpha;
|
|
M(1,0) = - M(0,1);
|
|
}
|
|
|
|
if (rmse)
|
|
{
|
|
*rmse = 0;
|
|
for (int i = 0; i < npoints; ++i)
|
|
{
|
|
p0 = points0[i];
|
|
p1 = points1[i];
|
|
*rmse += sqr(p1.x - M(0,0)*p0.x - M(0,1)*p0.y) +
|
|
sqr(p1.y - M(1,0)*p0.x - M(1,1)*p0.y);
|
|
}
|
|
*rmse = std::sqrt(*rmse / npoints);
|
|
}
|
|
|
|
return M;
|
|
}
|
|
|
|
static Mat estimateGlobMotionLeastSquaresRigid(
|
|
int npoints, Point2f *points0, Point2f *points1, float *rmse)
|
|
{
|
|
Point2f mean0(0.f, 0.f);
|
|
Point2f mean1(0.f, 0.f);
|
|
|
|
for (int i = 0; i < npoints; ++i)
|
|
{
|
|
mean0 += points0[i];
|
|
mean1 += points1[i];
|
|
}
|
|
|
|
mean0 *= 1.f / npoints;
|
|
mean1 *= 1.f / npoints;
|
|
|
|
Mat_<float> A = Mat::zeros(2, 2, CV_32F);
|
|
Point2f pt0, pt1;
|
|
|
|
for (int i = 0; i < npoints; ++i)
|
|
{
|
|
pt0 = points0[i] - mean0;
|
|
pt1 = points1[i] - mean1;
|
|
A(0,0) += pt1.x * pt0.x;
|
|
A(0,1) += pt1.x * pt0.y;
|
|
A(1,0) += pt1.y * pt0.x;
|
|
A(1,1) += pt1.y * pt0.y;
|
|
}
|
|
|
|
Mat_<float> M = Mat::eye(3, 3, CV_32F);
|
|
|
|
SVD svd(A);
|
|
Mat_<float> R = svd.u * svd.vt;
|
|
Mat tmp(M(Rect(0,0,2,2)));
|
|
R.copyTo(tmp);
|
|
|
|
M(0,2) = mean1.x - R(0,0)*mean0.x - R(0,1)*mean0.y;
|
|
M(1,2) = mean1.y - R(1,0)*mean0.x - R(1,1)*mean0.y;
|
|
|
|
if (rmse)
|
|
{
|
|
*rmse = 0;
|
|
for (int i = 0; i < npoints; ++i)
|
|
{
|
|
pt0 = points0[i];
|
|
pt1 = points1[i];
|
|
*rmse += sqr(pt1.x - M(0,0)*pt0.x - M(0,1)*pt0.y - M(0,2)) +
|
|
sqr(pt1.y - M(1,0)*pt0.x - M(1,1)*pt0.y - M(1,2));
|
|
}
|
|
*rmse = std::sqrt(*rmse / npoints);
|
|
}
|
|
|
|
return M;
|
|
}
|
|
|
|
|
|
static Mat estimateGlobMotionLeastSquaresSimilarity(
|
|
int npoints, Point2f *points0, Point2f *points1, float *rmse)
|
|
{
|
|
Mat_<float> T0 = normalizePoints(npoints, points0);
|
|
Mat_<float> T1 = normalizePoints(npoints, points1);
|
|
|
|
Mat_<float> A(2*npoints, 4), b(2*npoints, 1);
|
|
float *a0, *a1;
|
|
Point2f p0, p1;
|
|
|
|
for (int i = 0; i < npoints; ++i)
|
|
{
|
|
a0 = A[2*i];
|
|
a1 = A[2*i+1];
|
|
p0 = points0[i];
|
|
p1 = points1[i];
|
|
a0[0] = p0.x; a0[1] = p0.y; a0[2] = 1; a0[3] = 0;
|
|
a1[0] = p0.y; a1[1] = -p0.x; a1[2] = 0; a1[3] = 1;
|
|
b(2*i,0) = p1.x;
|
|
b(2*i+1,0) = p1.y;
|
|
}
|
|
|
|
Mat_<float> sol;
|
|
solve(A, b, sol, DECOMP_NORMAL | DECOMP_LU);
|
|
|
|
if (rmse)
|
|
*rmse = static_cast<float>(norm(A*sol, b, NORM_L2) / std::sqrt(static_cast<double>(npoints)));
|
|
|
|
Mat_<float> M = Mat::eye(3, 3, CV_32F);
|
|
M(0,0) = M(1,1) = sol(0,0);
|
|
M(0,1) = sol(1,0);
|
|
M(1,0) = -sol(1,0);
|
|
M(0,2) = sol(2,0);
|
|
M(1,2) = sol(3,0);
|
|
|
|
return T1.inv() * M * T0;
|
|
}
|
|
|
|
|
|
static Mat estimateGlobMotionLeastSquaresAffine(
|
|
int npoints, Point2f *points0, Point2f *points1, float *rmse)
|
|
{
|
|
Mat_<float> T0 = normalizePoints(npoints, points0);
|
|
Mat_<float> T1 = normalizePoints(npoints, points1);
|
|
|
|
Mat_<float> A(2*npoints, 6), b(2*npoints, 1);
|
|
float *a0, *a1;
|
|
Point2f p0, p1;
|
|
|
|
for (int i = 0; i < npoints; ++i)
|
|
{
|
|
a0 = A[2*i];
|
|
a1 = A[2*i+1];
|
|
p0 = points0[i];
|
|
p1 = points1[i];
|
|
a0[0] = p0.x; a0[1] = p0.y; a0[2] = 1; a0[3] = a0[4] = a0[5] = 0;
|
|
a1[0] = a1[1] = a1[2] = 0; a1[3] = p0.x; a1[4] = p0.y; a1[5] = 1;
|
|
b(2*i,0) = p1.x;
|
|
b(2*i+1,0) = p1.y;
|
|
}
|
|
|
|
Mat_<float> sol;
|
|
solve(A, b, sol, DECOMP_NORMAL | DECOMP_LU);
|
|
|
|
if (rmse)
|
|
*rmse = static_cast<float>(norm(A*sol, b, NORM_L2) / std::sqrt(static_cast<double>(npoints)));
|
|
|
|
Mat_<float> M = Mat::eye(3, 3, CV_32F);
|
|
for (int i = 0, k = 0; i < 2; ++i)
|
|
for (int j = 0; j < 3; ++j, ++k)
|
|
M(i,j) = sol(k,0);
|
|
|
|
return T1.inv() * M * T0;
|
|
}
|
|
|
|
|
|
Mat estimateGlobalMotionLeastSquares(
|
|
InputOutputArray points0, InputOutputArray points1, int model, float *rmse)
|
|
{
|
|
CV_Assert(model <= MM_AFFINE);
|
|
CV_Assert(points0.type() == points1.type());
|
|
const int npoints = points0.getMat().checkVector(2);
|
|
CV_Assert(points1.getMat().checkVector(2) == npoints);
|
|
|
|
typedef Mat (*Impl)(int, Point2f*, Point2f*, float*);
|
|
static Impl impls[] = { estimateGlobMotionLeastSquaresTranslation,
|
|
estimateGlobMotionLeastSquaresTranslationAndScale,
|
|
estimateGlobMotionLeastSquaresRotation,
|
|
estimateGlobMotionLeastSquaresRigid,
|
|
estimateGlobMotionLeastSquaresSimilarity,
|
|
estimateGlobMotionLeastSquaresAffine };
|
|
|
|
Point2f *points0_ = points0.getMat().ptr<Point2f>();
|
|
Point2f *points1_ = points1.getMat().ptr<Point2f>();
|
|
|
|
return impls[model](npoints, points0_, points1_, rmse);
|
|
}
|
|
|
|
|
|
Mat estimateGlobalMotionRansac(
|
|
InputArray points0, InputArray points1, int model, const RansacParams ¶ms,
|
|
float *rmse, int *ninliers)
|
|
{
|
|
CV_Assert(model <= MM_AFFINE);
|
|
CV_Assert(points0.type() == points1.type());
|
|
const int npoints = points0.getMat().checkVector(2);
|
|
CV_Assert(points1.getMat().checkVector(2) == npoints);
|
|
|
|
if (npoints < params.size)
|
|
return Mat::eye(3, 3, CV_32F);
|
|
|
|
const Point2f *points0_ = points0.getMat().ptr<Point2f>();
|
|
const Point2f *points1_ = points1.getMat().ptr<Point2f>();
|
|
const int niters = params.niters();
|
|
|
|
// current hypothesis
|
|
std::vector<int> indices(params.size);
|
|
std::vector<Point2f> subset0(params.size);
|
|
std::vector<Point2f> subset1(params.size);
|
|
|
|
// best hypothesis
|
|
std::vector<Point2f> subset0best(params.size);
|
|
std::vector<Point2f> subset1best(params.size);
|
|
Mat_<float> bestM;
|
|
int ninliersMax = -1;
|
|
|
|
RNG rng(0);
|
|
Point2f p0, p1;
|
|
float x, y;
|
|
|
|
for (int iter = 0; iter < niters; ++iter)
|
|
{
|
|
for (int i = 0; i < params.size; ++i)
|
|
{
|
|
bool ok = false;
|
|
while (!ok)
|
|
{
|
|
ok = true;
|
|
indices[i] = static_cast<unsigned>(rng) % npoints;
|
|
for (int j = 0; j < i; ++j)
|
|
if (indices[i] == indices[j])
|
|
{ ok = false; break; }
|
|
}
|
|
}
|
|
for (int i = 0; i < params.size; ++i)
|
|
{
|
|
subset0[i] = points0_[indices[i]];
|
|
subset1[i] = points1_[indices[i]];
|
|
}
|
|
|
|
Mat_<float> M = estimateGlobalMotionLeastSquares(subset0, subset1, model, 0);
|
|
|
|
int numinliers = 0;
|
|
for (int i = 0; i < npoints; ++i)
|
|
{
|
|
p0 = points0_[i];
|
|
p1 = points1_[i];
|
|
x = M(0,0)*p0.x + M(0,1)*p0.y + M(0,2);
|
|
y = M(1,0)*p0.x + M(1,1)*p0.y + M(1,2);
|
|
if (sqr(x - p1.x) + sqr(y - p1.y) < params.thresh * params.thresh)
|
|
numinliers++;
|
|
}
|
|
if (numinliers >= ninliersMax)
|
|
{
|
|
bestM = M;
|
|
ninliersMax = numinliers;
|
|
subset0best.swap(subset0);
|
|
subset1best.swap(subset1);
|
|
}
|
|
}
|
|
|
|
if (ninliersMax < params.size)
|
|
// compute RMSE
|
|
bestM = estimateGlobalMotionLeastSquares(subset0best, subset1best, model, rmse);
|
|
else
|
|
{
|
|
subset0.resize(ninliersMax);
|
|
subset1.resize(ninliersMax);
|
|
for (int i = 0, j = 0; i < npoints; ++i)
|
|
{
|
|
p0 = points0_[i];
|
|
p1 = points1_[i];
|
|
x = bestM(0,0)*p0.x + bestM(0,1)*p0.y + bestM(0,2);
|
|
y = bestM(1,0)*p0.x + bestM(1,1)*p0.y + bestM(1,2);
|
|
if (sqr(x - p1.x) + sqr(y - p1.y) < params.thresh * params.thresh)
|
|
{
|
|
subset0[j] = p0;
|
|
subset1[j] = p1;
|
|
j++;
|
|
}
|
|
}
|
|
bestM = estimateGlobalMotionLeastSquares(subset0, subset1, model, rmse);
|
|
}
|
|
|
|
if (ninliers)
|
|
*ninliers = ninliersMax;
|
|
|
|
return bestM;
|
|
}
|
|
|
|
|
|
MotionEstimatorRansacL2::MotionEstimatorRansacL2(MotionModel model)
|
|
: MotionEstimatorBase(model)
|
|
{
|
|
setRansacParams(RansacParams::default2dMotion(model));
|
|
setMinInlierRatio(0.1f);
|
|
}
|
|
|
|
|
|
Mat MotionEstimatorRansacL2::estimate(InputArray points0, InputArray points1, bool *ok)
|
|
{
|
|
CV_Assert(points0.type() == points1.type());
|
|
const int npoints = points0.getMat().checkVector(2);
|
|
CV_Assert(points1.getMat().checkVector(2) == npoints);
|
|
|
|
// find motion
|
|
|
|
int ninliers = 0;
|
|
Mat_<float> M;
|
|
|
|
if (motionModel() != MM_HOMOGRAPHY)
|
|
M = estimateGlobalMotionRansac(
|
|
points0, points1, motionModel(), ransacParams_, 0, &ninliers);
|
|
else
|
|
{
|
|
std::vector<uchar> mask;
|
|
M = findHomography(points0, points1, mask, LMEDS);
|
|
for (int i = 0; i < npoints; ++i)
|
|
if (mask[i]) ninliers++;
|
|
}
|
|
|
|
// check if we're confident enough in estimated motion
|
|
|
|
if (ok) *ok = true;
|
|
if (static_cast<float>(ninliers) / npoints < minInlierRatio_)
|
|
{
|
|
M = Mat::eye(3, 3, CV_32F);
|
|
if (ok) *ok = false;
|
|
}
|
|
|
|
return M;
|
|
}
|
|
|
|
|
|
MotionEstimatorL1::MotionEstimatorL1(MotionModel model)
|
|
: MotionEstimatorBase(model)
|
|
{
|
|
}
|
|
|
|
|
|
// TODO will estimation of all motions as one LP problem be faster?
|
|
Mat MotionEstimatorL1::estimate(InputArray points0, InputArray points1, bool *ok)
|
|
{
|
|
CV_Assert(points0.type() == points1.type());
|
|
const int npoints = points0.getMat().checkVector(2);
|
|
CV_Assert(points1.getMat().checkVector(2) == npoints);
|
|
|
|
#ifndef HAVE_CLP
|
|
|
|
CV_Error(Error::StsError, "The library is built without Clp support");
|
|
if (ok) *ok = false;
|
|
return Mat::eye(3, 3, CV_32F);
|
|
|
|
#else
|
|
|
|
CV_Assert(motionModel() <= MM_AFFINE && motionModel() != MM_RIGID);
|
|
|
|
// prepare LP problem
|
|
|
|
const Point2f *points0_ = points0.getMat().ptr<Point2f>();
|
|
const Point2f *points1_ = points1.getMat().ptr<Point2f>();
|
|
|
|
int ncols = 6 + 2*npoints;
|
|
int nrows = 4*npoints;
|
|
|
|
if (motionModel() == MM_SIMILARITY)
|
|
nrows += 2;
|
|
else if (motionModel() == MM_TRANSLATION_AND_SCALE)
|
|
nrows += 3;
|
|
else if (motionModel() == MM_TRANSLATION)
|
|
nrows += 4;
|
|
|
|
rows_.clear();
|
|
cols_.clear();
|
|
elems_.clear();
|
|
obj_.assign(ncols, 0);
|
|
collb_.assign(ncols, -INF);
|
|
colub_.assign(ncols, INF);
|
|
|
|
int c = 6;
|
|
|
|
for (int i = 0; i < npoints; ++i, c += 2)
|
|
{
|
|
obj_[c] = 1;
|
|
collb_[c] = 0;
|
|
|
|
obj_[c+1] = 1;
|
|
collb_[c+1] = 0;
|
|
}
|
|
|
|
elems_.clear();
|
|
rowlb_.assign(nrows, -INF);
|
|
rowub_.assign(nrows, INF);
|
|
|
|
int r = 0;
|
|
Point2f p0, p1;
|
|
|
|
for (int i = 0; i < npoints; ++i, r += 4)
|
|
{
|
|
p0 = points0_[i];
|
|
p1 = points1_[i];
|
|
|
|
set(r, 0, p0.x); set(r, 1, p0.y); set(r, 2, 1); set(r, 6+2*i, -1);
|
|
rowub_[r] = p1.x;
|
|
|
|
set(r+1, 3, p0.x); set(r+1, 4, p0.y); set(r+1, 5, 1); set(r+1, 6+2*i+1, -1);
|
|
rowub_[r+1] = p1.y;
|
|
|
|
set(r+2, 0, p0.x); set(r+2, 1, p0.y); set(r+2, 2, 1); set(r+2, 6+2*i, 1);
|
|
rowlb_[r+2] = p1.x;
|
|
|
|
set(r+3, 3, p0.x); set(r+3, 4, p0.y); set(r+3, 5, 1); set(r+3, 6+2*i+1, 1);
|
|
rowlb_[r+3] = p1.y;
|
|
}
|
|
|
|
if (motionModel() == MM_SIMILARITY)
|
|
{
|
|
set(r, 0, 1); set(r, 4, -1); rowlb_[r] = rowub_[r] = 0;
|
|
set(r+1, 1, 1); set(r+1, 3, 1); rowlb_[r+1] = rowub_[r+1] = 0;
|
|
}
|
|
else if (motionModel() == MM_TRANSLATION_AND_SCALE)
|
|
{
|
|
set(r, 0, 1); set(r, 4, -1); rowlb_[r] = rowub_[r] = 0;
|
|
set(r+1, 1, 1); rowlb_[r+1] = rowub_[r+1] = 0;
|
|
set(r+2, 3, 1); rowlb_[r+2] = rowub_[r+2] = 0;
|
|
}
|
|
else if (motionModel() == MM_TRANSLATION)
|
|
{
|
|
set(r, 0, 1); rowlb_[r] = rowub_[r] = 1;
|
|
set(r+1, 1, 1); rowlb_[r+1] = rowub_[r+1] = 0;
|
|
set(r+2, 3, 1); rowlb_[r+2] = rowub_[r+2] = 0;
|
|
set(r+3, 4, 1); rowlb_[r+3] = rowub_[r+3] = 1;
|
|
}
|
|
|
|
// solve
|
|
|
|
CoinPackedMatrix A(true, &rows_[0], &cols_[0], &elems_[0], elems_.size());
|
|
A.setDimensions(nrows, ncols);
|
|
|
|
ClpSimplex model(false);
|
|
model.loadProblem(A, &collb_[0], &colub_[0], &obj_[0], &rowlb_[0], &rowub_[0]);
|
|
|
|
ClpDualRowSteepest dualSteep(1);
|
|
model.setDualRowPivotAlgorithm(dualSteep);
|
|
model.scaling(1);
|
|
|
|
model.dual();
|
|
|
|
// extract motion
|
|
|
|
const double *sol = model.getColSolution();
|
|
|
|
Mat_<float> M = Mat::eye(3, 3, CV_32F);
|
|
M(0,0) = sol[0];
|
|
M(0,1) = sol[1];
|
|
M(0,2) = sol[2];
|
|
M(1,0) = sol[3];
|
|
M(1,1) = sol[4];
|
|
M(1,2) = sol[5];
|
|
|
|
if (ok) *ok = true;
|
|
return M;
|
|
#endif
|
|
}
|
|
|
|
|
|
FromFileMotionReader::FromFileMotionReader(const String &path)
|
|
: ImageMotionEstimatorBase(MM_UNKNOWN)
|
|
{
|
|
file_.open(path.c_str());
|
|
CV_Assert(file_.is_open());
|
|
}
|
|
|
|
|
|
Mat FromFileMotionReader::estimate(const Mat &/*frame0*/, const Mat &/*frame1*/, bool *ok)
|
|
{
|
|
Mat_<float> M(3, 3);
|
|
bool ok_;
|
|
file_ >> M(0,0) >> M(0,1) >> M(0,2)
|
|
>> M(1,0) >> M(1,1) >> M(1,2)
|
|
>> M(2,0) >> M(2,1) >> M(2,2) >> ok_;
|
|
if (ok) *ok = ok_;
|
|
return M;
|
|
}
|
|
|
|
|
|
ToFileMotionWriter::ToFileMotionWriter(const String &path, Ptr<ImageMotionEstimatorBase> estimator)
|
|
: ImageMotionEstimatorBase(estimator->motionModel()), motionEstimator_(estimator)
|
|
{
|
|
file_.open(path.c_str());
|
|
CV_Assert(file_.is_open());
|
|
}
|
|
|
|
|
|
Mat ToFileMotionWriter::estimate(const Mat &frame0, const Mat &frame1, bool *ok)
|
|
{
|
|
bool ok_;
|
|
Mat_<float> M = motionEstimator_->estimate(frame0, frame1, &ok_);
|
|
file_ << M(0,0) << " " << M(0,1) << " " << M(0,2) << " "
|
|
<< M(1,0) << " " << M(1,1) << " " << M(1,2) << " "
|
|
<< M(2,0) << " " << M(2,1) << " " << M(2,2) << " " << ok_ << std::endl;
|
|
if (ok) *ok = ok_;
|
|
return M;
|
|
}
|
|
|
|
|
|
KeypointBasedMotionEstimator::KeypointBasedMotionEstimator(Ptr<MotionEstimatorBase> estimator)
|
|
: ImageMotionEstimatorBase(estimator->motionModel()), motionEstimator_(estimator)
|
|
{
|
|
setDetector(makePtr<GoodFeaturesToTrackDetector>());
|
|
setOpticalFlowEstimator(makePtr<SparsePyrLkOptFlowEstimator>());
|
|
setOutlierRejector(makePtr<NullOutlierRejector>());
|
|
}
|
|
|
|
|
|
Mat KeypointBasedMotionEstimator::estimate(const Mat &frame0, const Mat &frame1, bool *ok)
|
|
{
|
|
// find keypoints
|
|
detector_->detect(frame0, keypointsPrev_);
|
|
if (keypointsPrev_.empty())
|
|
return Mat::eye(3, 3, CV_32F);
|
|
|
|
// extract points from keypoints
|
|
pointsPrev_.resize(keypointsPrev_.size());
|
|
for (size_t i = 0; i < keypointsPrev_.size(); ++i)
|
|
pointsPrev_[i] = keypointsPrev_[i].pt;
|
|
|
|
// find correspondences
|
|
optFlowEstimator_->run(frame0, frame1, pointsPrev_, points_, status_, noArray());
|
|
|
|
// leave good correspondences only
|
|
|
|
pointsPrevGood_.clear(); pointsPrevGood_.reserve(points_.size());
|
|
pointsGood_.clear(); pointsGood_.reserve(points_.size());
|
|
|
|
for (size_t i = 0; i < points_.size(); ++i)
|
|
{
|
|
if (status_[i])
|
|
{
|
|
pointsPrevGood_.push_back(pointsPrev_[i]);
|
|
pointsGood_.push_back(points_[i]);
|
|
}
|
|
}
|
|
|
|
// perform outlier rejection
|
|
|
|
IOutlierRejector *outlRejector = outlierRejector_.get();
|
|
if (!dynamic_cast<NullOutlierRejector*>(outlRejector))
|
|
{
|
|
pointsPrev_.swap(pointsPrevGood_);
|
|
points_.swap(pointsGood_);
|
|
|
|
outlierRejector_->process(frame0.size(), pointsPrev_, points_, status_);
|
|
|
|
pointsPrevGood_.clear();
|
|
pointsPrevGood_.reserve(points_.size());
|
|
|
|
pointsGood_.clear();
|
|
pointsGood_.reserve(points_.size());
|
|
|
|
for (size_t i = 0; i < points_.size(); ++i)
|
|
{
|
|
if (status_[i])
|
|
{
|
|
pointsPrevGood_.push_back(pointsPrev_[i]);
|
|
pointsGood_.push_back(points_[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// estimate motion
|
|
return motionEstimator_->estimate(pointsPrevGood_, pointsGood_, ok);
|
|
}
|
|
|
|
|
|
#if defined(HAVE_OPENCV_CUDAIMGPROC) && defined(HAVE_OPENCV_CUDA) && defined(HAVE_OPENCV_CUDAOPTFLOW)
|
|
|
|
KeypointBasedMotionEstimatorGpu::KeypointBasedMotionEstimatorGpu(Ptr<MotionEstimatorBase> estimator)
|
|
: ImageMotionEstimatorBase(estimator->motionModel()), motionEstimator_(estimator)
|
|
{
|
|
detector_ = cuda::createGoodFeaturesToTrackDetector(CV_8UC1);
|
|
|
|
CV_Assert(cuda::getCudaEnabledDeviceCount() > 0);
|
|
setOutlierRejector(makePtr<NullOutlierRejector>());
|
|
}
|
|
|
|
|
|
Mat KeypointBasedMotionEstimatorGpu::estimate(const Mat &frame0, const Mat &frame1, bool *ok)
|
|
{
|
|
frame0_.upload(frame0);
|
|
frame1_.upload(frame1);
|
|
return estimate(frame0_, frame1_, ok);
|
|
}
|
|
|
|
|
|
Mat KeypointBasedMotionEstimatorGpu::estimate(const cuda::GpuMat &frame0, const cuda::GpuMat &frame1, bool *ok)
|
|
{
|
|
// convert frame to gray if it's color
|
|
|
|
cuda::GpuMat grayFrame0;
|
|
if (frame0.channels() == 1)
|
|
grayFrame0 = frame0;
|
|
else
|
|
{
|
|
cuda::cvtColor(frame0, grayFrame0_, COLOR_BGR2GRAY);
|
|
grayFrame0 = grayFrame0_;
|
|
}
|
|
|
|
// find keypoints
|
|
detector_->detect(grayFrame0, pointsPrev_);
|
|
|
|
// find correspondences
|
|
optFlowEstimator_.run(frame0, frame1, pointsPrev_, points_, status_);
|
|
|
|
// leave good correspondences only
|
|
cuda::compactPoints(pointsPrev_, points_, status_);
|
|
|
|
pointsPrev_.download(hostPointsPrev_);
|
|
points_.download(hostPoints_);
|
|
|
|
// perform outlier rejection
|
|
|
|
IOutlierRejector *rejector = outlierRejector_.get();
|
|
if (!dynamic_cast<NullOutlierRejector*>(rejector))
|
|
{
|
|
outlierRejector_->process(frame0.size(), hostPointsPrev_, hostPoints_, rejectionStatus_);
|
|
|
|
hostPointsPrevTmp_.clear();
|
|
hostPointsPrevTmp_.reserve(hostPoints_.cols);
|
|
|
|
hostPointsTmp_.clear();
|
|
hostPointsTmp_.reserve(hostPoints_.cols);
|
|
|
|
for (int i = 0; i < hostPoints_.cols; ++i)
|
|
{
|
|
if (rejectionStatus_[i])
|
|
{
|
|
hostPointsPrevTmp_.push_back(hostPointsPrev_.at<Point2f>(0,i));
|
|
hostPointsTmp_.push_back(hostPoints_.at<Point2f>(0,i));
|
|
}
|
|
}
|
|
|
|
hostPointsPrev_ = Mat(1, (int)hostPointsPrevTmp_.size(), CV_32FC2, &hostPointsPrevTmp_[0]);
|
|
hostPoints_ = Mat(1, (int)hostPointsTmp_.size(), CV_32FC2, &hostPointsTmp_[0]);
|
|
}
|
|
|
|
// estimate motion
|
|
return motionEstimator_->estimate(hostPointsPrev_, hostPoints_, ok);
|
|
}
|
|
|
|
#endif // defined(HAVE_OPENCV_CUDAIMGPROC) && defined(HAVE_OPENCV_CUDA) && defined(HAVE_OPENCV_CUDAOPTFLOW)
|
|
|
|
|
|
Mat getMotion(int from, int to, const std::vector<Mat> &motions)
|
|
{
|
|
Mat M = Mat::eye(3, 3, CV_32F);
|
|
if (to > from)
|
|
{
|
|
for (int i = from; i < to; ++i)
|
|
M = at(i, motions) * M;
|
|
}
|
|
else if (from > to)
|
|
{
|
|
for (int i = to; i < from; ++i)
|
|
M = at(i, motions) * M;
|
|
M = M.inv();
|
|
}
|
|
return M;
|
|
}
|
|
|
|
} // namespace videostab
|
|
} // namespace cv
|