mirror of
https://github.com/opencv/opencv.git
synced 2024-12-11 14:39:11 +08:00
a110ede0a2
* G-API: Introduce ONNX backend for Inference - Basic operations are implemented (Infer, -ROI, -List, -List2); - Implemented automatic preprocessing for ONNX models; - Test suite is extended with `OPENCV_GAPI_ONNX_MODEL_PATH` env for test data (test data is an ONNX Model Zoo repo snapshot); - Fixed kernel lookup logic in core G-API: - Lookup NN kernels not in the default package, but in the associated backend's aux package. Now two NN backends can work in the same graph. - Added Infer SSD demo and a combined ONNX/IE demo; * G-API/ONNX: Fix some of CMake issues Co-authored-by: Pashchenkov, Maxim <maxim.pashchenkov@intel.com>
279 lines
9.7 KiB
C++
279 lines
9.7 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
//
|
|
// Copyright (C) 2020 Intel Corporation
|
|
|
|
#include "../test_precomp.hpp"
|
|
|
|
#ifdef HAVE_ONNX
|
|
|
|
#include <stdexcept>
|
|
#include <onnxruntime_cxx_api.h>
|
|
#include <ade/util/iota_range.hpp>
|
|
|
|
#include <opencv2/gapi/infer/onnx.hpp>
|
|
|
|
namespace {
|
|
|
|
struct ONNXInitPath {
|
|
ONNXInitPath() {
|
|
const char* env_path = getenv("OPENCV_GAPI_ONNX_MODEL_PATH");
|
|
if (env_path)
|
|
cvtest::addDataSearchPath(env_path);
|
|
}
|
|
};
|
|
static ONNXInitPath g_init_path;
|
|
|
|
cv::Mat initMatrixRandU(int type, cv::Size sz_in)
|
|
{
|
|
cv::Mat in_mat1 = cv::Mat(sz_in, type);
|
|
|
|
if (CV_MAT_DEPTH(type) < CV_32F)
|
|
{
|
|
cv::randu(in_mat1, cv::Scalar::all(0), cv::Scalar::all(255));
|
|
}
|
|
else
|
|
{
|
|
const int fscale = 256; // avoid bits near ULP, generate stable test input
|
|
cv::Mat in_mat32s(in_mat1.size(), CV_MAKE_TYPE(CV_32S, CV_MAT_CN(type)));
|
|
cv::randu(in_mat32s, cv::Scalar::all(0), cv::Scalar::all(255 * fscale));
|
|
in_mat32s.convertTo(in_mat1, type, 1.0f / fscale, 0);
|
|
}
|
|
return in_mat1;
|
|
}
|
|
}
|
|
namespace opencv_test
|
|
{
|
|
namespace {
|
|
// FIXME: taken from the DNN module
|
|
void normAssert(cv::InputArray ref, cv::InputArray test,
|
|
const char *comment /*= ""*/,
|
|
double l1 = 0.00001, double lInf = 0.0001)
|
|
{
|
|
double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total();
|
|
EXPECT_LE(normL1, l1) << comment;
|
|
|
|
double normInf = cvtest::norm(ref, test, cv::NORM_INF);
|
|
EXPECT_LE(normInf, lInf) << comment;
|
|
}
|
|
|
|
std::string findModel(const std::string &model_name)
|
|
{
|
|
return findDataFile("vision/classification/squeezenet/model/" + model_name + ".onnx", false);
|
|
}
|
|
|
|
inline void preprocess(const cv::Mat& src,
|
|
cv::Mat& dst,
|
|
const cv::Scalar& mean,
|
|
const cv::Scalar& std) {
|
|
int new_h = 224;
|
|
int new_w = 224;
|
|
cv::Mat tmp, nmat, cvt;
|
|
cv::resize(src, dst, cv::Size(new_w, new_h));
|
|
dst.convertTo(cvt, CV_32F, 1.f / 255);
|
|
nmat = cvt - mean;
|
|
tmp = nmat / std;
|
|
dst.create(cv::Size(new_w, new_h * src.channels()), CV_32F);
|
|
std::vector<cv::Mat> planes;
|
|
for (int i = 0; i < src.channels(); ++i) {
|
|
planes.push_back(dst.rowRange(i * new_h, (i + 1) * new_h));
|
|
}
|
|
cv::split(tmp, planes);
|
|
}
|
|
|
|
void InferONNX(const std::string& model_path,
|
|
const cv::Mat& in,
|
|
cv::Mat& out,
|
|
const cv::Scalar& mean,
|
|
const cv::Scalar& std)
|
|
{
|
|
// FIXME: It must be a FIXTURE test!
|
|
Ort::Env env(ORT_LOGGING_LEVEL_WARNING, "test");
|
|
Ort::SessionOptions session_options;
|
|
Ort::Session session(env, model_path.data(), session_options);
|
|
auto input_node_dims = // 0 - one input
|
|
session.GetInputTypeInfo(0).GetTensorTypeAndShapeInfo().GetShape();
|
|
auto output_node_dims = // 0 - one output
|
|
session.GetOutputTypeInfo(0).GetTensorTypeAndShapeInfo().GetShape();
|
|
Ort::AllocatorWithDefaultOptions allocator;
|
|
char* in_node_name_p = session.GetInputName(0, allocator);
|
|
char* out_node_name_p = session.GetOutputName(0, allocator);
|
|
std::string in_node_name(in_node_name_p);
|
|
std::string out_node_name(out_node_name_p);
|
|
allocator.Free(in_node_name_p);
|
|
allocator.Free(out_node_name_p);
|
|
|
|
auto memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
|
|
cv::Mat dst;
|
|
preprocess(in, dst, mean, std);
|
|
|
|
out.create(std::vector<int>(output_node_dims.begin(),
|
|
output_node_dims.end()), CV_32F); // empty output Mat
|
|
auto in_tensor = Ort::Value::CreateTensor<float>(memory_info,
|
|
dst.ptr<float>(),
|
|
dst.total(),
|
|
input_node_dims.data(),
|
|
input_node_dims.size());
|
|
auto out_tensor = Ort::Value::CreateTensor<float>(memory_info,
|
|
out.ptr<float>(),
|
|
out.total(),
|
|
output_node_dims.data(),
|
|
output_node_dims.size());
|
|
std::vector<const char *> in_names = {in_node_name.data()};
|
|
std::vector<const char *> out_names = {out_node_name.data()};
|
|
session.Run(Ort::RunOptions{nullptr},
|
|
in_names.data(),
|
|
&in_tensor,
|
|
session.GetInputCount(),
|
|
out_names.data(),
|
|
&out_tensor,
|
|
session.GetOutputCount());
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
TEST(ONNX, Infer)
|
|
{
|
|
cv::Mat in_mat1, out_gapi, out_onnx;
|
|
std::string model_path = findModel("squeezenet1.0-9");
|
|
// NOTE: All tests chek "random" image
|
|
// Ideally it should be a real image
|
|
in_mat1 = initMatrixRandU(CV_8UC3, cv::Size{640, 480});
|
|
|
|
cv::Scalar mean = { 0.485, 0.456, 0.406 };
|
|
cv::Scalar std = { 0.229, 0.224, 0.225 };
|
|
|
|
// ONNX_API code
|
|
InferONNX(model_path, in_mat1, out_onnx, mean, std);
|
|
|
|
// G_API code
|
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
|
cv::GMat in;
|
|
cv::GMat out = cv::gapi::infer<SqueezNet>(in);
|
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
|
|
// NOTE: We have to normalize U8 tensor
|
|
// so cfgMeanStd() is here
|
|
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({mean},{std});
|
|
comp.apply(cv::gin(in_mat1),
|
|
cv::gout(out_gapi),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
|
|
// Validate
|
|
ASSERT_EQ(1000u, out_onnx.total());
|
|
ASSERT_EQ(1000u, out_gapi.total());
|
|
normAssert(out_onnx, out_gapi, "Test classification output");
|
|
}
|
|
|
|
TEST(ONNX, InferROI)
|
|
{
|
|
cv::Mat in_mat1, out_gapi, out_onnx;
|
|
std::string model_path = findModel("squeezenet1.0-9");
|
|
in_mat1 = initMatrixRandU(CV_8UC3, cv::Size{640, 480});
|
|
|
|
cv::Scalar mean = { 0.485, 0.456, 0.406 }; // squeeznet mean
|
|
cv::Scalar std = { 0.229, 0.224, 0.225 }; // squeeznet std
|
|
|
|
cv::Rect ROI(cv::Point{0, 0}, cv::Size{250, 250});
|
|
// ONNX_API code
|
|
InferONNX(model_path, in_mat1(ROI), out_onnx, mean, std);
|
|
|
|
// G_API code
|
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
|
cv::GMat in;
|
|
cv::GOpaque<cv::Rect> rect;
|
|
cv::GMat out = cv::gapi::infer<SqueezNet>(rect, in);
|
|
cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out));
|
|
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({mean},{std});
|
|
comp.apply(cv::gin(in_mat1, ROI),
|
|
cv::gout(out_gapi),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
|
|
// Validate
|
|
ASSERT_EQ(1000u, out_onnx.total());
|
|
ASSERT_EQ(1000u, out_gapi.total());
|
|
normAssert(out_onnx, out_gapi, "Test classification output");
|
|
}
|
|
|
|
TEST(ONNX, InferROIList)
|
|
{
|
|
cv::Mat in_mat1;
|
|
std::string model_path = findModel("squeezenet1.0-9");
|
|
in_mat1 = initMatrixRandU(CV_8UC3, cv::Size{640, 480});
|
|
|
|
cv::Scalar mean = { 0.485, 0.456, 0.406 }; // squeeznet mean
|
|
cv::Scalar std = { 0.229, 0.224, 0.225 }; // squeeznet std
|
|
|
|
std::vector<cv::Rect> rois = {
|
|
cv::Rect(cv::Point{ 0, 0}, cv::Size{80, 120}),
|
|
cv::Rect(cv::Point{50, 100}, cv::Size{250, 360}),
|
|
};
|
|
std::vector<cv::Mat> out_gapi;
|
|
std::vector<cv::Mat> out_onnx(rois.size());
|
|
// ONNX_API code
|
|
for (size_t i = 0; i < rois.size(); ++i) {
|
|
InferONNX(model_path, in_mat1(rois[i]), out_onnx[i], mean, std);
|
|
}
|
|
|
|
// G_API code
|
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
|
cv::GMat in;
|
|
cv::GArray<cv::Rect> rr;
|
|
cv::GArray<cv::GMat> out = cv::gapi::infer<SqueezNet>(rr, in);
|
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
|
|
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({mean},{std});
|
|
comp.apply(cv::gin(in_mat1, rois),
|
|
cv::gout(out_gapi),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
|
|
// Validate
|
|
for (size_t i = 0; i < rois.size(); ++i) {
|
|
ASSERT_EQ(1000u, out_onnx[i].total());
|
|
ASSERT_EQ(1000u, out_gapi[i].total());
|
|
normAssert(out_onnx[i], out_gapi[i], "Test classification output");
|
|
}
|
|
}
|
|
|
|
TEST(ONNX, Infer2ROIList)
|
|
{
|
|
cv::Mat in_mat1;
|
|
std::string model_path = findModel("squeezenet1.0-9");
|
|
in_mat1 = initMatrixRandU(CV_8UC3, cv::Size{640, 480});
|
|
|
|
cv::Scalar mean = { 0.485, 0.456, 0.406 }; // squeeznet mean
|
|
cv::Scalar std = { 0.229, 0.224, 0.225 }; // squeeznet std
|
|
|
|
std::vector<cv::Rect> rois = {
|
|
cv::Rect(cv::Point{ 0, 0}, cv::Size{80, 120}),
|
|
cv::Rect(cv::Point{50, 100}, cv::Size{250, 360}),
|
|
};
|
|
std::vector<cv::Mat> out_gapi;
|
|
std::vector<cv::Mat> out_onnx(rois.size());
|
|
// ONNX_API code
|
|
for (size_t i = 0; i < rois.size(); ++i) {
|
|
InferONNX(model_path, in_mat1(rois[i]), out_onnx[i], mean, std);
|
|
}
|
|
|
|
// G_API code
|
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
|
cv::GMat in;
|
|
cv::GArray<cv::Rect> rr;
|
|
cv::GArray<cv::GMat> out = cv::gapi::infer2<SqueezNet>(in,rr);
|
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
|
|
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({mean},{std});
|
|
comp.apply(cv::gin(in_mat1, rois),
|
|
cv::gout(out_gapi),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
|
|
// Validate
|
|
for (size_t i = 0; i < rois.size(); ++i) {
|
|
ASSERT_EQ(1000u, out_onnx[i].total());
|
|
ASSERT_EQ(1000u, out_gapi[i].total());
|
|
normAssert(out_onnx[i], out_gapi[i], "Test classification output");
|
|
}
|
|
}
|
|
|
|
} // namespace opencv_test
|
|
|
|
#endif // HAVE_ONNX
|