mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 14:19:03 +08:00
e170115ad0
Both modules added
876 lines
25 KiB
C++
876 lines
25 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
|
|
#include "precomp.hpp"
|
|
#include "opencv2/photo.hpp"
|
|
#include "opencv2/imgproc.hpp"
|
|
#include "opencv2/highgui.hpp"
|
|
#include "opencv2/core.hpp"
|
|
#include <iostream>
|
|
#include <stdlib.h>
|
|
#include <complex>
|
|
#include "math.h"
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
|
|
#define pi 3.1416
|
|
|
|
class Cloning
|
|
{
|
|
|
|
public:
|
|
|
|
Mat grx,gry,sgx,sgy,r_channel,g_channel,b_channel,smask1,grx32,gry32;
|
|
Mat smask,srx32,sry32;
|
|
Mat rx_channel,ry_channel,gx_channel,gy_channel,bx_channel,by_channel,resultr,resultg,resultb;
|
|
void init(Mat &I, Mat &wmask);
|
|
void calc(Mat &I, Mat &gx, Mat &gy, Mat &sx, Mat &sy);
|
|
void getGradientx(const Mat &img, Mat &gx);
|
|
void getGradienty(const Mat &img, Mat &gy);
|
|
void lapx(const Mat &img, Mat &gxx);
|
|
void lapy(const Mat &img, Mat &gyy);
|
|
void dst(double *gtest, double *gfinal,int h,int w);
|
|
void idst(double *gtest, double *gfinal,int h,int w);
|
|
void transpose(double *mat, double *mat_t,int h,int w);
|
|
void poisson_solver(const Mat &img, Mat &gxx , Mat &gyy, Mat &result);
|
|
void normal_clone(Mat &I, Mat &mask, Mat &wmask, Mat &final, int num);
|
|
void local_color_change(Mat &I, Mat &mask, Mat &wmask, Mat &final, float red, float green, float blue);
|
|
void illum_change(Mat &I, Mat &mask, Mat &wmask, Mat &final, float alpha, float beta);
|
|
void texture_flatten(Mat &I, Mat &final);
|
|
};
|
|
|
|
void Cloning::getGradientx( const Mat &img, Mat &gx)
|
|
{
|
|
int w = img.size().width;
|
|
int h = img.size().height;
|
|
int channel = img.channels();
|
|
|
|
gx = Mat::zeros(img.size(),CV_32FC3);
|
|
for(int i=0;i<h;i++)
|
|
for(int j=0;j<w;j++)
|
|
for(int c=0;c<channel;++c)
|
|
{
|
|
gx.at<float>(i,j*channel+c) =
|
|
(float)img.at<uchar>(i,(j+1)*channel+c) - (float)img.at<uchar>(i,j*channel+c);
|
|
}
|
|
}
|
|
void Cloning::getGradienty( const Mat &img, Mat &gy)
|
|
{
|
|
int w = img.size().width;
|
|
int h = img.size().height;
|
|
int channel = img.channels();
|
|
|
|
gy = Mat::zeros(img.size(),CV_32FC3);
|
|
for(int i=0;i<h;i++)
|
|
for(int j=0;j<w;j++)
|
|
for(int c=0;c<channel;++c)
|
|
{
|
|
gy.at<float>(i,j*channel+c) =
|
|
(float)img.at<uchar>((i+1),j*channel+c) - (float)img.at<uchar>(i,j*channel+c);
|
|
|
|
}
|
|
}
|
|
void Cloning::lapx( const Mat &img, Mat &gxx)
|
|
{
|
|
int w = img.size().width;
|
|
int h = img.size().height;
|
|
int channel = img.channels();
|
|
|
|
gxx = Mat::zeros(img.size(),CV_32FC3);
|
|
for(int i=0;i<h;i++)
|
|
for(int j=0;j<w-1;j++)
|
|
for(int c=0;c<channel;++c)
|
|
{
|
|
gxx.at<float>(i,(j+1)*channel+c) =
|
|
(float)img.at<float>(i,(j+1)*channel+c) - (float)img.at<float>(i,j*channel+c);
|
|
}
|
|
}
|
|
void Cloning::lapy( const Mat &img, Mat &gyy)
|
|
{
|
|
int w = img.size().width;
|
|
int h = img.size().height;
|
|
int channel = img.channels();
|
|
gyy = Mat::zeros(img.size(),CV_32FC3);
|
|
for(int i=0;i<h-1;i++)
|
|
for(int j=0;j<w;j++)
|
|
for(int c=0;c<channel;++c)
|
|
{
|
|
gyy.at<float>(i+1,j*channel+c) =
|
|
(float)img.at<float>((i+1),j*channel+c) - (float)img.at<float>(i,j*channel+c);
|
|
|
|
}
|
|
}
|
|
|
|
void Cloning::dst(double *gtest, double *gfinal,int h,int w)
|
|
{
|
|
|
|
unsigned long int idx;
|
|
|
|
Mat temp = Mat(2*h+2,1,CV_32F);
|
|
Mat res = Mat(h,1,CV_32F);
|
|
|
|
Mat planes[] = {Mat_<float>(temp), Mat::zeros(temp.size(), CV_32F)};
|
|
|
|
Mat complex1;
|
|
int p=0;
|
|
for(int i=0;i<w;i++)
|
|
{
|
|
temp.at<float>(0,0) = 0.0;
|
|
|
|
for(int j=0,r=1;j<h;j++,r++)
|
|
{
|
|
idx = j*w+i;
|
|
temp.at<float>(r,0) = gtest[idx];
|
|
}
|
|
|
|
temp.at<float>(h+1,0)=0.0;
|
|
|
|
for(int j=h-1, r=h+2;j>=0;j--,r++)
|
|
{
|
|
idx = j*w+i;
|
|
temp.at<float>(r,0) = -1*gtest[idx];
|
|
}
|
|
|
|
merge(planes, 2, complex1);
|
|
|
|
dft(complex1,complex1,0,0);
|
|
|
|
Mat planes1[] = {Mat::zeros(complex1.size(), CV_32F), Mat::zeros(complex1.size(), CV_32F)};
|
|
|
|
split(complex1, planes1);
|
|
|
|
std::complex<double> two_i = std::sqrt(std::complex<double>(-1));
|
|
|
|
double fac = -2*imag(two_i);
|
|
|
|
for(int c=1,z=0;c<h+1;c++,z++)
|
|
{
|
|
res.at<float>(z,0) = planes1[1].at<float>(c,0)/fac;
|
|
}
|
|
|
|
for(int q=0,z=0;q<h;q++,z++)
|
|
{
|
|
idx = q*w+p;
|
|
gfinal[idx] = res.at<float>(z,0);
|
|
}
|
|
p++;
|
|
}
|
|
|
|
temp.release();
|
|
res.release();
|
|
planes[0].release();
|
|
planes[1].release();
|
|
|
|
}
|
|
|
|
void Cloning::idst(double *gtest, double *gfinal,int h,int w)
|
|
{
|
|
int nn = h+1;
|
|
unsigned long int idx;
|
|
dst(gtest,gfinal,h,w);
|
|
for(int i= 0;i<h;i++)
|
|
for(int j=0;j<w;j++)
|
|
{
|
|
idx = i*w + j;
|
|
gfinal[idx] = (double) (2*gfinal[idx])/nn;
|
|
}
|
|
|
|
}
|
|
void Cloning::transpose(double *mat, double *mat_t,int h,int w)
|
|
{
|
|
|
|
Mat tmp = Mat(h,w,CV_32FC1);
|
|
unsigned long int idx;
|
|
for(int i = 0 ; i < h;i++)
|
|
{
|
|
for(int j = 0 ; j < w; j++)
|
|
{
|
|
|
|
idx = i*(w) + j;
|
|
tmp.at<float>(i,j) = mat[idx];
|
|
}
|
|
}
|
|
Mat tmp_t = tmp.t();
|
|
|
|
for(int i = 0;i < tmp_t.size().height; i++)
|
|
for(int j=0;j<tmp_t.size().width;j++)
|
|
{
|
|
idx = i*tmp_t.size().width + j;
|
|
mat_t[idx] = tmp_t.at<float>(i,j);
|
|
}
|
|
|
|
tmp.release();
|
|
|
|
}
|
|
void Cloning::poisson_solver(const Mat &img, Mat &gxx , Mat &gyy, Mat &result)
|
|
{
|
|
|
|
int w = img.size().width;
|
|
int h = img.size().height;
|
|
|
|
unsigned long int idx,idx1;
|
|
|
|
Mat lap = Mat(img.size(),CV_32FC1);
|
|
|
|
for(int i =0;i<h;i++)
|
|
for(int j=0;j<w;j++)
|
|
lap.at<float>(i,j)=gyy.at<float>(i,j)+gxx.at<float>(i,j);
|
|
|
|
Mat bound = img.clone();
|
|
|
|
for(int i =1;i<h-1;i++)
|
|
for(int j=1;j<w-1;j++)
|
|
{
|
|
bound.at<uchar>(i,j) = 0.0;
|
|
}
|
|
|
|
double *f_bp = new double[h*w];
|
|
|
|
|
|
for(int i =1;i<h-1;i++)
|
|
for(int j=1;j<w-1;j++)
|
|
{
|
|
idx=i*w + j;
|
|
f_bp[idx] = -4*(int)bound.at<uchar>(i,j) + (int)bound.at<uchar>(i,(j+1)) + (int)bound.at<uchar>(i,(j-1))
|
|
+ (int)bound.at<uchar>(i-1,j) + (int)bound.at<uchar>(i+1,j);
|
|
}
|
|
|
|
|
|
Mat diff = Mat(h,w,CV_32FC1);
|
|
for(int i =0;i<h;i++)
|
|
{
|
|
for(int j=0;j<w;j++)
|
|
{
|
|
idx = i*w+j;
|
|
diff.at<float>(i,j) = (lap.at<float>(i,j) - f_bp[idx]);
|
|
}
|
|
}
|
|
|
|
lap.release();
|
|
|
|
double *gtest = new double[(h-2)*(w-2)];
|
|
for(int i = 0 ; i < h-2;i++)
|
|
{
|
|
for(int j = 0 ; j < w-2; j++)
|
|
{
|
|
idx = i*(w-2) + j;
|
|
gtest[idx] = diff.at<float>(i+1,j+1);
|
|
|
|
}
|
|
}
|
|
|
|
diff.release();
|
|
///////////////////////////////////////////////////// Find DST /////////////////////////////////////////////////////
|
|
|
|
double *gfinal = new double[(h-2)*(w-2)];
|
|
double *gfinal_t = new double[(h-2)*(w-2)];
|
|
double *denom = new double[(h-2)*(w-2)];
|
|
double *f3 = new double[(h-2)*(w-2)];
|
|
double *f3_t = new double[(h-2)*(w-2)];
|
|
double *img_d = new double[(h)*(w)];
|
|
|
|
dst(gtest,gfinal,h-2,w-2);
|
|
|
|
transpose(gfinal,gfinal_t,h-2,w-2);
|
|
|
|
dst(gfinal_t,gfinal,w-2,h-2);
|
|
|
|
transpose(gfinal,gfinal_t,w-2,h-2);
|
|
|
|
int cy=1;
|
|
|
|
for(int i = 0 ; i < w-2;i++,cy++)
|
|
{
|
|
for(int j = 0,cx = 1; j < h-2; j++,cx++)
|
|
{
|
|
idx = j*(w-2) + i;
|
|
denom[idx] = (float) 2*cos(pi*cy/( (double) (w-1))) - 2 + 2*cos(pi*cx/((double) (h-1))) - 2;
|
|
|
|
}
|
|
}
|
|
|
|
for(idx = 0 ; idx < (unsigned)(w-2)*(h-2) ;idx++)
|
|
{
|
|
gfinal_t[idx] = gfinal_t[idx]/denom[idx];
|
|
}
|
|
|
|
|
|
idst(gfinal_t,f3,h-2,w-2);
|
|
|
|
transpose(f3,f3_t,h-2,w-2);
|
|
|
|
idst(f3_t,f3,w-2,h-2);
|
|
|
|
transpose(f3,f3_t,w-2,h-2);
|
|
|
|
for(int i = 0 ; i < h;i++)
|
|
{
|
|
for(int j = 0 ; j < w; j++)
|
|
{
|
|
idx = i*w + j;
|
|
img_d[idx] = (double)img.at<uchar>(i,j);
|
|
}
|
|
}
|
|
for(int i = 1 ; i < h-1;i++)
|
|
{
|
|
for(int j = 1 ; j < w-1; j++)
|
|
{
|
|
idx = i*w + j;
|
|
img_d[idx] = 0.0;
|
|
}
|
|
}
|
|
for(int i = 1,id1=0 ; i < h-1;i++,id1++)
|
|
{
|
|
for(int j = 1,id2=0 ; j < w-1; j++,id2++)
|
|
{
|
|
idx = i*w + j;
|
|
idx1= id1*(w-2) + id2;
|
|
img_d[idx] = f3_t[idx1];
|
|
}
|
|
}
|
|
|
|
for(int i = 0 ; i < h;i++)
|
|
{
|
|
for(int j = 0 ; j < w; j++)
|
|
{
|
|
idx = i*w + j;
|
|
if(img_d[idx] < 0.0)
|
|
result.at<uchar>(i,j) = 0;
|
|
else if(img_d[idx] > 255.0)
|
|
result.at<uchar>(i,j) = 255.0;
|
|
else
|
|
result.at<uchar>(i,j) = img_d[idx];
|
|
}
|
|
}
|
|
|
|
delete [] gfinal;
|
|
delete [] gfinal_t;
|
|
delete [] denom;
|
|
delete [] f3;
|
|
delete [] f3_t;
|
|
delete [] img_d;
|
|
delete [] gtest;
|
|
delete [] f_bp;
|
|
|
|
}
|
|
|
|
void Cloning::init(Mat &I, Mat &wmask)
|
|
{
|
|
|
|
grx = Mat(I.size(),CV_32FC3);
|
|
gry = Mat(I.size(),CV_32FC3);
|
|
sgx = Mat(I.size(),CV_32FC3);
|
|
sgy = Mat(I.size(),CV_32FC3);
|
|
|
|
r_channel = Mat::zeros(I.size(),CV_8UC1);
|
|
g_channel = Mat::zeros(I.size(),CV_8UC1);
|
|
b_channel = Mat::zeros(I.size(),CV_8UC1);
|
|
|
|
for(int i=0;i<I.size().height;i++)
|
|
for(int j=0;j<I.size().width;j++)
|
|
{
|
|
r_channel.at<uchar>(i,j) = I.at<uchar>(i,j*3+0);
|
|
g_channel.at<uchar>(i,j) = I.at<uchar>(i,j*3+1);
|
|
b_channel.at<uchar>(i,j) = I.at<uchar>(i,j*3+2);
|
|
}
|
|
|
|
smask = Mat(wmask.size(),CV_32FC1);
|
|
srx32 = Mat(I.size(),CV_32FC3);
|
|
sry32 = Mat(I.size(),CV_32FC3);
|
|
smask1 = Mat(wmask.size(),CV_32FC1);
|
|
grx32 = Mat(I.size(),CV_32FC3);
|
|
gry32 = Mat(I.size(),CV_32FC3);
|
|
}
|
|
|
|
void Cloning::calc(Mat &I, Mat &gx, Mat &gy, Mat &sx, Mat &sy)
|
|
{
|
|
|
|
int channel = I.channels();
|
|
Mat fx = Mat(I.size(),CV_32FC3);
|
|
Mat fy = Mat(I.size(),CV_32FC3);
|
|
|
|
for(int i=0;i < I.size().height; i++)
|
|
for(int j=0; j < I.size().width; j++)
|
|
for(int c=0;c<channel;++c)
|
|
{
|
|
fx.at<float>(i,j*channel+c) =
|
|
(gx.at<float>(i,j*channel+c)+sx.at<float>(i,j*channel+c));
|
|
fy.at<float>(i,j*channel+c) =
|
|
(gy.at<float>(i,j*channel+c)+sy.at<float>(i,j*channel+c));
|
|
}
|
|
|
|
Mat gxx = Mat(I.size(),CV_32FC3);
|
|
Mat gyy = Mat(I.size(),CV_32FC3);
|
|
|
|
lapx(fx,gxx);
|
|
lapy(fy,gyy);
|
|
|
|
rx_channel = Mat(I.size(),CV_32FC1);
|
|
gx_channel = Mat(I.size(),CV_32FC1);
|
|
bx_channel = Mat(I.size(),CV_32FC1);
|
|
|
|
for(int i=0;i<I.size().height;i++)
|
|
for(int j=0;j<I.size().width;j++)
|
|
{
|
|
rx_channel.at<float>(i,j) = gxx.at<float>(i,j*3+0);
|
|
gx_channel.at<float>(i,j) = gxx.at<float>(i,j*3+1);
|
|
bx_channel.at<float>(i,j) = gxx.at<float>(i,j*3+2);
|
|
}
|
|
|
|
ry_channel = Mat(I.size(),CV_32FC1);
|
|
gy_channel = Mat(I.size(),CV_32FC1);
|
|
by_channel = Mat(I.size(),CV_32FC1);
|
|
|
|
for(int i=0;i<I.size().height;i++)
|
|
for(int j=0;j<I.size().width;j++)
|
|
{
|
|
ry_channel.at<float>(i,j) = gyy.at<float>(i,j*3+0);
|
|
gy_channel.at<float>(i,j) = gyy.at<float>(i,j*3+1);
|
|
by_channel.at<float>(i,j) = gyy.at<float>(i,j*3+2);
|
|
}
|
|
|
|
resultr = Mat(I.size(),CV_8UC1);
|
|
resultg = Mat(I.size(),CV_8UC1);
|
|
resultb = Mat(I.size(),CV_8UC1);
|
|
|
|
clock_t tic = clock();
|
|
|
|
|
|
poisson_solver(r_channel,rx_channel, ry_channel,resultr);
|
|
poisson_solver(g_channel,gx_channel, gy_channel,resultg);
|
|
poisson_solver(b_channel,bx_channel, by_channel,resultb);
|
|
|
|
clock_t toc = clock();
|
|
|
|
printf("Execution time: %f seconds\n", (double)(toc - tic) / CLOCKS_PER_SEC);
|
|
|
|
|
|
}
|
|
void Cloning::normal_clone(Mat &I, Mat &mask, Mat &wmask, Mat &final, int num)
|
|
{
|
|
init(I,wmask);
|
|
|
|
int w = I.size().width;
|
|
int h = I.size().height;
|
|
int channel = I.channels();
|
|
|
|
getGradientx(I,grx);
|
|
getGradienty(I,gry);
|
|
|
|
if(num != 3)
|
|
{
|
|
getGradientx(mask,sgx);
|
|
getGradienty(mask,sgy);
|
|
}
|
|
|
|
Mat Kernel(Size(3, 3), CV_8UC1);
|
|
Kernel.setTo(Scalar(1));
|
|
|
|
erode(wmask, wmask, Kernel);
|
|
erode(wmask, wmask, Kernel);
|
|
erode(wmask, wmask, Kernel);
|
|
|
|
wmask.convertTo(smask,CV_32FC1,1.0/255.0);
|
|
I.convertTo(srx32,CV_32FC3,1.0/255.0);
|
|
I.convertTo(sry32,CV_32FC3,1.0/255.0);
|
|
|
|
if(num == 1)
|
|
{
|
|
for(int i=0;i < h; i++)
|
|
for(int j=0; j < w; j++)
|
|
for(int c=0;c<channel;++c)
|
|
{
|
|
srx32.at<float>(i,j*channel+c) =
|
|
(sgx.at<float>(i,j*channel+c)*smask.at<float>(i,j));
|
|
sry32.at<float>(i,j*channel+c) =
|
|
(sgy.at<float>(i,j*channel+c)*smask.at<float>(i,j));
|
|
}
|
|
|
|
}
|
|
else if(num == 2)
|
|
{
|
|
for(int i=0;i < h; i++)
|
|
for(int j=0; j < w; j++)
|
|
for(int c=0;c<channel;++c)
|
|
{
|
|
if(abs(sgx.at<float>(i,j*channel+c) - sgy.at<float>(i,j*channel+c)) >
|
|
abs(grx.at<float>(i,j*channel+c) - gry.at<float>(i,j*channel+c)))
|
|
{
|
|
|
|
srx32.at<float>(i,j*channel+c) = sgx.at<float>(i,j*channel+c)
|
|
* smask.at<float>(i,j);
|
|
sry32.at<float>(i,j*channel+c) = sgy.at<float>(i,j*channel+c)
|
|
* smask.at<float>(i,j);
|
|
}
|
|
else
|
|
{
|
|
srx32.at<float>(i,j*channel+c) = grx.at<float>(i,j*channel+c)
|
|
* smask.at<float>(i,j);
|
|
sry32.at<float>(i,j*channel+c) = gry.at<float>(i,j*channel+c)
|
|
* smask.at<float>(i,j);
|
|
}
|
|
}
|
|
}
|
|
else if(num == 3)
|
|
{
|
|
Mat gray = Mat(mask.size(),CV_8UC1);
|
|
Mat gray8 = Mat(mask.size(),CV_8UC3);
|
|
cvtColor(mask, gray, COLOR_BGR2GRAY );
|
|
|
|
for(int i=0;i<mask.size().height;i++)
|
|
for(int j=0;j<mask.size().width;j++)
|
|
{
|
|
gray8.at<uchar>(i,j*3+0) = gray.at<uchar>(i,j);
|
|
gray8.at<uchar>(i,j*3+1) = gray.at<uchar>(i,j);
|
|
gray8.at<uchar>(i,j*3+2) = gray.at<uchar>(i,j);
|
|
}
|
|
|
|
|
|
getGradientx(gray8,sgx);
|
|
getGradienty(gray8,sgy);
|
|
|
|
for(int i=0;i < h; i++)
|
|
for(int j=0; j < w; j++)
|
|
for(int c=0;c<channel;++c)
|
|
{
|
|
srx32.at<float>(i,j*channel+c) =
|
|
(sgx.at<float>(i,j*channel+c)*smask.at<float>(i,j));
|
|
sry32.at<float>(i,j*channel+c) =
|
|
(sgy.at<float>(i,j*channel+c)*smask.at<float>(i,j));
|
|
}
|
|
|
|
}
|
|
|
|
bitwise_not(wmask,wmask);
|
|
|
|
wmask.convertTo(smask1,CV_32FC1,1.0/255.0);
|
|
I.convertTo(grx32,CV_32FC3,1.0/255.0);
|
|
I.convertTo(gry32,CV_32FC3,1.0/255.0);
|
|
|
|
for(int i=0;i < h; i++)
|
|
for(int j=0; j < w; j++)
|
|
for(int c=0;c<channel;++c)
|
|
{
|
|
grx32.at<float>(i,j*channel+c) =
|
|
(grx.at<float>(i,j*channel+c)*smask1.at<float>(i,j));
|
|
gry32.at<float>(i,j*channel+c) =
|
|
(gry.at<float>(i,j*channel+c)*smask1.at<float>(i,j));
|
|
}
|
|
|
|
calc(I,grx32,gry32,srx32,sry32);
|
|
|
|
for(int i=0;i<h;i++)
|
|
for(int j=0;j<w;j++)
|
|
{
|
|
final.at<uchar>(i,j*3+0) = resultr.at<uchar>(i,j);
|
|
final.at<uchar>(i,j*3+1) = resultg.at<uchar>(i,j);
|
|
final.at<uchar>(i,j*3+2) = resultb.at<uchar>(i,j);
|
|
}
|
|
|
|
}
|
|
|
|
void Cloning::local_color_change(Mat &I, Mat &mask, Mat &wmask, Mat &final, float red=1.0, float green=1.0, float blue=1.0)
|
|
{
|
|
init(I,wmask);
|
|
|
|
int w = I.size().width;
|
|
int h = I.size().height;
|
|
int channel = I.channels();
|
|
|
|
getGradientx(I,grx);
|
|
getGradienty(I,gry);
|
|
|
|
getGradientx(mask,sgx);
|
|
getGradienty(mask,sgy);
|
|
|
|
Mat Kernel(Size(3, 3), CV_8UC1);
|
|
Kernel.setTo(Scalar(1));
|
|
|
|
erode(wmask, wmask, Kernel);
|
|
erode(wmask, wmask, Kernel);
|
|
erode(wmask, wmask, Kernel);
|
|
|
|
wmask.convertTo(smask,CV_32FC1,1.0/255.0);
|
|
I.convertTo(srx32,CV_32FC3,1.0/255.0);
|
|
I.convertTo(sry32,CV_32FC3,1.0/255.0);
|
|
|
|
for(int i=0;i < h; i++)
|
|
for(int j=0; j < w; j++)
|
|
for(int c=0;c<channel;++c)
|
|
{
|
|
srx32.at<float>(i,j*channel+c) =
|
|
(sgx.at<float>(i,j*channel+c)*smask.at<float>(i,j));
|
|
sry32.at<float>(i,j*channel+c) =
|
|
(sgy.at<float>(i,j*channel+c)*smask.at<float>(i,j));
|
|
}
|
|
|
|
Mat factor = Mat(I.size(),CV_32FC3);
|
|
|
|
for(int i=0;i < h; i++)
|
|
for(int j=0; j < w; j++)
|
|
{
|
|
factor.at<float>(i,j*channel+0) = blue;
|
|
factor.at<float>(i,j*channel+1) = green;
|
|
factor.at<float>(i,j*channel+2) = red;
|
|
}
|
|
|
|
|
|
|
|
for(int i=0;i < h; i++)
|
|
for(int j=0; j < w; j++)
|
|
for(int c=0;c<channel;++c)
|
|
{
|
|
srx32.at<float>(i,j*channel+c) =
|
|
srx32.at<float>(i,j*channel+c)*factor.at<float>(i,j*channel+c);
|
|
sry32.at<float>(i,j*channel+c) =
|
|
sry32.at<float>(i,j*channel+c)*factor.at<float>(i,j*channel+c);
|
|
}
|
|
|
|
bitwise_not(wmask,wmask);
|
|
|
|
wmask.convertTo(smask1,CV_32FC1,1.0/255.0);
|
|
I.convertTo(grx32,CV_32FC3,1.0/255.0);
|
|
I.convertTo(gry32,CV_32FC3,1.0/255.0);
|
|
|
|
for(int i=0;i < h; i++)
|
|
for(int j=0; j < w; j++)
|
|
for(int c=0;c<channel;++c)
|
|
{
|
|
grx32.at<float>(i,j*channel+c) =
|
|
(grx.at<float>(i,j*channel+c)*smask1.at<float>(i,j));
|
|
gry32.at<float>(i,j*channel+c) =
|
|
(gry.at<float>(i,j*channel+c)*smask1.at<float>(i,j));
|
|
}
|
|
|
|
calc(I,grx32,gry32,srx32,sry32);
|
|
|
|
for(int i=0;i<h;i++)
|
|
for(int j=0;j<w;j++)
|
|
{
|
|
final.at<uchar>(i,j*3+0) = resultr.at<uchar>(i,j);
|
|
final.at<uchar>(i,j*3+1) = resultg.at<uchar>(i,j);
|
|
final.at<uchar>(i,j*3+2) = resultb.at<uchar>(i,j);
|
|
}
|
|
|
|
}
|
|
|
|
void Cloning::illum_change(Mat &I, Mat &mask, Mat &wmask, Mat &final, float alpha, float beta)
|
|
{
|
|
init(I,wmask);
|
|
|
|
int w = I.size().width;
|
|
int h = I.size().height;
|
|
int channel = I.channels();
|
|
|
|
getGradientx(I,grx);
|
|
getGradienty(I,gry);
|
|
|
|
getGradientx(mask,sgx);
|
|
getGradienty(mask,sgy);
|
|
|
|
Mat Kernel(Size(3, 3), CV_8UC1);
|
|
Kernel.setTo(Scalar(1));
|
|
|
|
erode(wmask, wmask, Kernel);
|
|
erode(wmask, wmask, Kernel);
|
|
erode(wmask, wmask, Kernel);
|
|
|
|
wmask.convertTo(smask,CV_32FC1,1.0/255.0);
|
|
I.convertTo(srx32,CV_32FC3,1.0/255.0);
|
|
I.convertTo(sry32,CV_32FC3,1.0/255.0);
|
|
|
|
for(int i=0;i < h; i++)
|
|
for(int j=0; j < w; j++)
|
|
for(int c=0;c<channel;++c)
|
|
{
|
|
srx32.at<float>(i,j*channel+c) =
|
|
(sgx.at<float>(i,j*channel+c)*smask.at<float>(i,j));
|
|
sry32.at<float>(i,j*channel+c) =
|
|
(sgy.at<float>(i,j*channel+c)*smask.at<float>(i,j));
|
|
}
|
|
|
|
|
|
Mat mag = Mat(I.size(),CV_32FC3);
|
|
I.convertTo(mag,CV_32FC3,1.0/255.0);
|
|
|
|
for(int i=0;i < h; i++)
|
|
for(int j=0; j < w; j++)
|
|
for(int c=0;c<channel;++c)
|
|
{
|
|
|
|
mag.at<float>(i,j*channel+c) =
|
|
sqrt(pow(srx32.at<float>(i,j*channel+c),2) + pow(sry32.at<float>(i,j*channel+c),2));
|
|
}
|
|
|
|
for(int i=0;i < h; i++)
|
|
for(int j=0; j < w; j++)
|
|
for(int c=0;c<channel;++c)
|
|
{
|
|
if(srx32.at<float>(i,j*channel+c) != 0)
|
|
{
|
|
srx32.at<float>(i,j*channel+c) =
|
|
pow(alpha,beta)*srx32.at<float>(i,j*channel+c)*pow(mag.at<float>(i,j*channel+c),-1*beta);
|
|
sry32.at<float>(i,j*channel+c) =
|
|
pow(alpha,beta)*sry32.at<float>(i,j*channel+c)*pow(mag.at<float>(i,j*channel+c),-1*beta);
|
|
}
|
|
}
|
|
|
|
bitwise_not(wmask,wmask);
|
|
|
|
wmask.convertTo(smask1,CV_32FC1,1.0/255.0);
|
|
I.convertTo(grx32,CV_32FC3,1.0/255.0);
|
|
I.convertTo(gry32,CV_32FC3,1.0/255.0);
|
|
|
|
for(int i=0;i < h; i++)
|
|
for(int j=0; j < w; j++)
|
|
for(int c=0;c<channel;++c)
|
|
{
|
|
grx32.at<float>(i,j*channel+c) =
|
|
(grx.at<float>(i,j*channel+c)*smask1.at<float>(i,j));
|
|
gry32.at<float>(i,j*channel+c) =
|
|
(gry.at<float>(i,j*channel+c)*smask1.at<float>(i,j));
|
|
}
|
|
|
|
calc(I,grx32,gry32,srx32,sry32);
|
|
|
|
for(int i=0;i<h;i++)
|
|
for(int j=0;j<w;j++)
|
|
{
|
|
final.at<uchar>(i,j*3+0) = resultr.at<uchar>(i,j);
|
|
final.at<uchar>(i,j*3+1) = resultg.at<uchar>(i,j);
|
|
final.at<uchar>(i,j*3+2) = resultb.at<uchar>(i,j);
|
|
}
|
|
}
|
|
|
|
void Cloning::texture_flatten(Mat &I, Mat &final)
|
|
{
|
|
|
|
grx = Mat(I.size(),CV_32FC3);
|
|
gry = Mat(I.size(),CV_32FC3);
|
|
|
|
Mat out = Mat(I.size(),CV_8UC1);
|
|
|
|
getGradientx( I, grx);
|
|
getGradienty( I, gry);
|
|
|
|
Canny( I, out, 30, 45, 3 );
|
|
|
|
int channel = I.channels();
|
|
|
|
for(int i=0;i<I.size().height;i++)
|
|
for(int j=0;j<I.size().width;j++)
|
|
for(int c=0;c<channel;c++)
|
|
{
|
|
if(out.at<uchar>(i,j) != 255)
|
|
{
|
|
grx.at<float>(i,j*channel+c) = 0.0;
|
|
gry.at<float>(i,j*channel+c) = 0.0;
|
|
}
|
|
}
|
|
|
|
r_channel = Mat::zeros(I.size(),CV_8UC1);
|
|
g_channel = Mat::zeros(I.size(),CV_8UC1);
|
|
b_channel = Mat::zeros(I.size(),CV_8UC1);
|
|
|
|
for(int i=0;i<I.size().height;i++)
|
|
for(int j=0;j<I.size().width;j++)
|
|
{
|
|
r_channel.at<uchar>(i,j) = I.at<uchar>(i,j*3+0);
|
|
g_channel.at<uchar>(i,j) = I.at<uchar>(i,j*3+1);
|
|
b_channel.at<uchar>(i,j) = I.at<uchar>(i,j*3+2);
|
|
}
|
|
|
|
Mat gxx = Mat(I.size(),CV_32FC3);
|
|
Mat gyy = Mat(I.size(),CV_32FC3);
|
|
|
|
lapx(grx,gxx);
|
|
lapy(gry,gyy);
|
|
|
|
rx_channel = Mat(I.size(),CV_32FC1);
|
|
gx_channel = Mat(I.size(),CV_32FC1);
|
|
bx_channel = Mat(I.size(),CV_32FC1);
|
|
|
|
for(int i=0;i<I.size().height;i++)
|
|
for(int j=0;j<I.size().width;j++)
|
|
{
|
|
rx_channel.at<float>(i,j) = gxx.at<float>(i,j*3+0);
|
|
gx_channel.at<float>(i,j) = gxx.at<float>(i,j*3+1);
|
|
bx_channel.at<float>(i,j) = gxx.at<float>(i,j*3+2);
|
|
}
|
|
|
|
ry_channel = Mat(I.size(),CV_32FC1);
|
|
gy_channel = Mat(I.size(),CV_32FC1);
|
|
by_channel = Mat(I.size(),CV_32FC1);
|
|
|
|
for(int i=0;i<I.size().height;i++)
|
|
for(int j=0;j<I.size().width;j++)
|
|
{
|
|
ry_channel.at<float>(i,j) = gyy.at<float>(i,j*3+0);
|
|
gy_channel.at<float>(i,j) = gyy.at<float>(i,j*3+1);
|
|
by_channel.at<float>(i,j) = gyy.at<float>(i,j*3+2);
|
|
}
|
|
|
|
resultr = Mat(I.size(),CV_8UC1);
|
|
resultg = Mat(I.size(),CV_8UC1);
|
|
resultb = Mat(I.size(),CV_8UC1);
|
|
|
|
clock_t tic = clock();
|
|
|
|
|
|
poisson_solver(r_channel,rx_channel, ry_channel,resultr);
|
|
poisson_solver(g_channel,gx_channel, gy_channel,resultg);
|
|
poisson_solver(b_channel,bx_channel, by_channel,resultb);
|
|
|
|
clock_t toc = clock();
|
|
|
|
printf("Execution time: %f seconds\n", (double)(toc - tic) / CLOCKS_PER_SEC);
|
|
|
|
for(int i=0;i<I.size().height;i++)
|
|
for(int j=0;j<I.size().width;j++)
|
|
{
|
|
final.at<uchar>(i,j*3+0) = resultr.at<uchar>(i,j);
|
|
final.at<uchar>(i,j*3+1) = resultg.at<uchar>(i,j);
|
|
final.at<uchar>(i,j*3+2) = resultb.at<uchar>(i,j);
|
|
}
|
|
}
|