mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
237 lines
7.4 KiB
C
237 lines
7.4 KiB
C
#include "clapack.h"
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
static integer c_n1 = -1;
|
|
|
|
/* Subroutine */ int dlaed1_(integer *n, doublereal *d__, doublereal *q,
|
|
integer *ldq, integer *indxq, doublereal *rho, integer *cutpnt,
|
|
doublereal *work, integer *iwork, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer q_dim1, q_offset, i__1, i__2;
|
|
|
|
/* Local variables */
|
|
integer i__, k, n1, n2, is, iw, iz, iq2, zpp1, indx, indxc;
|
|
extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
|
|
doublereal *, integer *);
|
|
integer indxp;
|
|
extern /* Subroutine */ int dlaed2_(integer *, integer *, integer *,
|
|
doublereal *, doublereal *, integer *, integer *, doublereal *,
|
|
doublereal *, doublereal *, doublereal *, doublereal *, integer *,
|
|
integer *, integer *, integer *, integer *), dlaed3_(integer *,
|
|
integer *, integer *, doublereal *, doublereal *, integer *,
|
|
doublereal *, doublereal *, doublereal *, integer *, integer *,
|
|
doublereal *, doublereal *, integer *);
|
|
integer idlmda;
|
|
extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *,
|
|
integer *, integer *, integer *), xerbla_(char *, integer *);
|
|
integer coltyp;
|
|
|
|
|
|
/* -- LAPACK routine (version 3.1) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2006 */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* DLAED1 computes the updated eigensystem of a diagonal */
|
|
/* matrix after modification by a rank-one symmetric matrix. This */
|
|
/* routine is used only for the eigenproblem which requires all */
|
|
/* eigenvalues and eigenvectors of a tridiagonal matrix. DLAED7 handles */
|
|
/* the case in which eigenvalues only or eigenvalues and eigenvectors */
|
|
/* of a full symmetric matrix (which was reduced to tridiagonal form) */
|
|
/* are desired. */
|
|
|
|
/* T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out) */
|
|
|
|
/* where Z = Q'u, u is a vector of length N with ones in the */
|
|
/* CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. */
|
|
|
|
/* The eigenvectors of the original matrix are stored in Q, and the */
|
|
/* eigenvalues are in D. The algorithm consists of three stages: */
|
|
|
|
/* The first stage consists of deflating the size of the problem */
|
|
/* when there are multiple eigenvalues or if there is a zero in */
|
|
/* the Z vector. For each such occurence the dimension of the */
|
|
/* secular equation problem is reduced by one. This stage is */
|
|
/* performed by the routine DLAED2. */
|
|
|
|
/* The second stage consists of calculating the updated */
|
|
/* eigenvalues. This is done by finding the roots of the secular */
|
|
/* equation via the routine DLAED4 (as called by DLAED3). */
|
|
/* This routine also calculates the eigenvectors of the current */
|
|
/* problem. */
|
|
|
|
/* The final stage consists of computing the updated eigenvectors */
|
|
/* directly using the updated eigenvalues. The eigenvectors for */
|
|
/* the current problem are multiplied with the eigenvectors from */
|
|
/* the overall problem. */
|
|
|
|
/* Arguments */
|
|
/* ========= */
|
|
|
|
/* N (input) INTEGER */
|
|
/* The dimension of the symmetric tridiagonal matrix. N >= 0. */
|
|
|
|
/* D (input/output) DOUBLE PRECISION array, dimension (N) */
|
|
/* On entry, the eigenvalues of the rank-1-perturbed matrix. */
|
|
/* On exit, the eigenvalues of the repaired matrix. */
|
|
|
|
/* Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N) */
|
|
/* On entry, the eigenvectors of the rank-1-perturbed matrix. */
|
|
/* On exit, the eigenvectors of the repaired tridiagonal matrix. */
|
|
|
|
/* LDQ (input) INTEGER */
|
|
/* The leading dimension of the array Q. LDQ >= max(1,N). */
|
|
|
|
/* INDXQ (input/output) INTEGER array, dimension (N) */
|
|
/* On entry, the permutation which separately sorts the two */
|
|
/* subproblems in D into ascending order. */
|
|
/* On exit, the permutation which will reintegrate the */
|
|
/* subproblems back into sorted order, */
|
|
/* i.e. D( INDXQ( I = 1, N ) ) will be in ascending order. */
|
|
|
|
/* RHO (input) DOUBLE PRECISION */
|
|
/* The subdiagonal entry used to create the rank-1 modification. */
|
|
|
|
/* CUTPNT (input) INTEGER */
|
|
/* The location of the last eigenvalue in the leading sub-matrix. */
|
|
/* min(1,N) <= CUTPNT <= N/2. */
|
|
|
|
/* WORK (workspace) DOUBLE PRECISION array, dimension (4*N + N**2) */
|
|
|
|
/* IWORK (workspace) INTEGER array, dimension (4*N) */
|
|
|
|
/* INFO (output) INTEGER */
|
|
/* = 0: successful exit. */
|
|
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
|
|
/* > 0: if INFO = 1, an eigenvalue did not converge */
|
|
|
|
/* Further Details */
|
|
/* =============== */
|
|
|
|
/* Based on contributions by */
|
|
/* Jeff Rutter, Computer Science Division, University of California */
|
|
/* at Berkeley, USA */
|
|
/* Modified by Francoise Tisseur, University of Tennessee. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
--d__;
|
|
q_dim1 = *ldq;
|
|
q_offset = 1 + q_dim1;
|
|
q -= q_offset;
|
|
--indxq;
|
|
--work;
|
|
--iwork;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
|
|
if (*n < 0) {
|
|
*info = -1;
|
|
} else if (*ldq < max(1,*n)) {
|
|
*info = -4;
|
|
} else /* if(complicated condition) */ {
|
|
/* Computing MIN */
|
|
i__1 = 1, i__2 = *n / 2;
|
|
if (min(i__1,i__2) > *cutpnt || *n / 2 < *cutpnt) {
|
|
*info = -7;
|
|
}
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("DLAED1", &i__1);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*n == 0) {
|
|
return 0;
|
|
}
|
|
|
|
/* The following values are integer pointers which indicate */
|
|
/* the portion of the workspace */
|
|
/* used by a particular array in DLAED2 and DLAED3. */
|
|
|
|
iz = 1;
|
|
idlmda = iz + *n;
|
|
iw = idlmda + *n;
|
|
iq2 = iw + *n;
|
|
|
|
indx = 1;
|
|
indxc = indx + *n;
|
|
coltyp = indxc + *n;
|
|
indxp = coltyp + *n;
|
|
|
|
|
|
/* Form the z-vector which consists of the last row of Q_1 and the */
|
|
/* first row of Q_2. */
|
|
|
|
dcopy_(cutpnt, &q[*cutpnt + q_dim1], ldq, &work[iz], &c__1);
|
|
zpp1 = *cutpnt + 1;
|
|
i__1 = *n - *cutpnt;
|
|
dcopy_(&i__1, &q[zpp1 + zpp1 * q_dim1], ldq, &work[iz + *cutpnt], &c__1);
|
|
|
|
/* Deflate eigenvalues. */
|
|
|
|
dlaed2_(&k, n, cutpnt, &d__[1], &q[q_offset], ldq, &indxq[1], rho, &work[
|
|
iz], &work[idlmda], &work[iw], &work[iq2], &iwork[indx], &iwork[
|
|
indxc], &iwork[indxp], &iwork[coltyp], info);
|
|
|
|
if (*info != 0) {
|
|
goto L20;
|
|
}
|
|
|
|
/* Solve Secular Equation. */
|
|
|
|
if (k != 0) {
|
|
is = (iwork[coltyp] + iwork[coltyp + 1]) * *cutpnt + (iwork[coltyp +
|
|
1] + iwork[coltyp + 2]) * (*n - *cutpnt) + iq2;
|
|
dlaed3_(&k, n, cutpnt, &d__[1], &q[q_offset], ldq, rho, &work[idlmda],
|
|
&work[iq2], &iwork[indxc], &iwork[coltyp], &work[iw], &work[
|
|
is], info);
|
|
if (*info != 0) {
|
|
goto L20;
|
|
}
|
|
|
|
/* Prepare the INDXQ sorting permutation. */
|
|
|
|
n1 = k;
|
|
n2 = *n - k;
|
|
dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]);
|
|
} else {
|
|
i__1 = *n;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
indxq[i__] = i__;
|
|
/* L10: */
|
|
}
|
|
}
|
|
|
|
L20:
|
|
return 0;
|
|
|
|
/* End of DLAED1 */
|
|
|
|
} /* dlaed1_ */
|