mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
595 lines
17 KiB
C
595 lines
17 KiB
C
#include "clapack.h"
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
static real c_b30 = 0.f;
|
|
|
|
/* Subroutine */ int slasd2_(integer *nl, integer *nr, integer *sqre, integer
|
|
*k, real *d__, real *z__, real *alpha, real *beta, real *u, integer *
|
|
ldu, real *vt, integer *ldvt, real *dsigma, real *u2, integer *ldu2,
|
|
real *vt2, integer *ldvt2, integer *idxp, integer *idx, integer *idxc,
|
|
integer *idxq, integer *coltyp, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1, vt_offset,
|
|
vt2_dim1, vt2_offset, i__1;
|
|
real r__1, r__2;
|
|
|
|
/* Local variables */
|
|
real c__;
|
|
integer i__, j, m, n;
|
|
real s;
|
|
integer k2;
|
|
real z1;
|
|
integer ct, jp;
|
|
real eps, tau, tol;
|
|
integer psm[4], nlp1, nlp2, idxi, idxj, ctot[4];
|
|
extern /* Subroutine */ int srot_(integer *, real *, integer *, real *,
|
|
integer *, real *, real *);
|
|
integer idxjp, jprev;
|
|
extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
|
|
integer *);
|
|
extern doublereal slapy2_(real *, real *), slamch_(char *);
|
|
extern /* Subroutine */ int xerbla_(char *, integer *), slamrg_(
|
|
integer *, integer *, real *, integer *, integer *, integer *);
|
|
real hlftol;
|
|
extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *,
|
|
integer *, real *, integer *), slaset_(char *, integer *,
|
|
integer *, real *, real *, real *, integer *);
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.1) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2006 */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* SLASD2 merges the two sets of singular values together into a single */
|
|
/* sorted set. Then it tries to deflate the size of the problem. */
|
|
/* There are two ways in which deflation can occur: when two or more */
|
|
/* singular values are close together or if there is a tiny entry in the */
|
|
/* Z vector. For each such occurrence the order of the related secular */
|
|
/* equation problem is reduced by one. */
|
|
|
|
/* SLASD2 is called from SLASD1. */
|
|
|
|
/* Arguments */
|
|
/* ========= */
|
|
|
|
/* NL (input) INTEGER */
|
|
/* The row dimension of the upper block. NL >= 1. */
|
|
|
|
/* NR (input) INTEGER */
|
|
/* The row dimension of the lower block. NR >= 1. */
|
|
|
|
/* SQRE (input) INTEGER */
|
|
/* = 0: the lower block is an NR-by-NR square matrix. */
|
|
/* = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
|
|
|
|
/* The bidiagonal matrix has N = NL + NR + 1 rows and */
|
|
/* M = N + SQRE >= N columns. */
|
|
|
|
/* K (output) INTEGER */
|
|
/* Contains the dimension of the non-deflated matrix, */
|
|
/* This is the order of the related secular equation. 1 <= K <=N. */
|
|
|
|
/* D (input/output) REAL array, dimension (N) */
|
|
/* On entry D contains the singular values of the two submatrices */
|
|
/* to be combined. On exit D contains the trailing (N-K) updated */
|
|
/* singular values (those which were deflated) sorted into */
|
|
/* increasing order. */
|
|
|
|
/* Z (output) REAL array, dimension (N) */
|
|
/* On exit Z contains the updating row vector in the secular */
|
|
/* equation. */
|
|
|
|
/* ALPHA (input) REAL */
|
|
/* Contains the diagonal element associated with the added row. */
|
|
|
|
/* BETA (input) REAL */
|
|
/* Contains the off-diagonal element associated with the added */
|
|
/* row. */
|
|
|
|
/* U (input/output) REAL array, dimension (LDU,N) */
|
|
/* On entry U contains the left singular vectors of two */
|
|
/* submatrices in the two square blocks with corners at (1,1), */
|
|
/* (NL, NL), and (NL+2, NL+2), (N,N). */
|
|
/* On exit U contains the trailing (N-K) updated left singular */
|
|
/* vectors (those which were deflated) in its last N-K columns. */
|
|
|
|
/* LDU (input) INTEGER */
|
|
/* The leading dimension of the array U. LDU >= N. */
|
|
|
|
/* VT (input/output) REAL array, dimension (LDVT,M) */
|
|
/* On entry VT' contains the right singular vectors of two */
|
|
/* submatrices in the two square blocks with corners at (1,1), */
|
|
/* (NL+1, NL+1), and (NL+2, NL+2), (M,M). */
|
|
/* On exit VT' contains the trailing (N-K) updated right singular */
|
|
/* vectors (those which were deflated) in its last N-K columns. */
|
|
/* In case SQRE =1, the last row of VT spans the right null */
|
|
/* space. */
|
|
|
|
/* LDVT (input) INTEGER */
|
|
/* The leading dimension of the array VT. LDVT >= M. */
|
|
|
|
/* DSIGMA (output) REAL array, dimension (N) */
|
|
/* Contains a copy of the diagonal elements (K-1 singular values */
|
|
/* and one zero) in the secular equation. */
|
|
|
|
/* U2 (output) REAL array, dimension (LDU2,N) */
|
|
/* Contains a copy of the first K-1 left singular vectors which */
|
|
/* will be used by SLASD3 in a matrix multiply (SGEMM) to solve */
|
|
/* for the new left singular vectors. U2 is arranged into four */
|
|
/* blocks. The first block contains a column with 1 at NL+1 and */
|
|
/* zero everywhere else; the second block contains non-zero */
|
|
/* entries only at and above NL; the third contains non-zero */
|
|
/* entries only below NL+1; and the fourth is dense. */
|
|
|
|
/* LDU2 (input) INTEGER */
|
|
/* The leading dimension of the array U2. LDU2 >= N. */
|
|
|
|
/* VT2 (output) REAL array, dimension (LDVT2,N) */
|
|
/* VT2' contains a copy of the first K right singular vectors */
|
|
/* which will be used by SLASD3 in a matrix multiply (SGEMM) to */
|
|
/* solve for the new right singular vectors. VT2 is arranged into */
|
|
/* three blocks. The first block contains a row that corresponds */
|
|
/* to the special 0 diagonal element in SIGMA; the second block */
|
|
/* contains non-zeros only at and before NL +1; the third block */
|
|
/* contains non-zeros only at and after NL +2. */
|
|
|
|
/* LDVT2 (input) INTEGER */
|
|
/* The leading dimension of the array VT2. LDVT2 >= M. */
|
|
|
|
/* IDXP (workspace) INTEGER array, dimension (N) */
|
|
/* This will contain the permutation used to place deflated */
|
|
/* values of D at the end of the array. On output IDXP(2:K) */
|
|
/* points to the nondeflated D-values and IDXP(K+1:N) */
|
|
/* points to the deflated singular values. */
|
|
|
|
/* IDX (workspace) INTEGER array, dimension (N) */
|
|
/* This will contain the permutation used to sort the contents of */
|
|
/* D into ascending order. */
|
|
|
|
/* IDXC (output) INTEGER array, dimension (N) */
|
|
/* This will contain the permutation used to arrange the columns */
|
|
/* of the deflated U matrix into three groups: the first group */
|
|
/* contains non-zero entries only at and above NL, the second */
|
|
/* contains non-zero entries only below NL+2, and the third is */
|
|
/* dense. */
|
|
|
|
/* IDXQ (input/output) INTEGER array, dimension (N) */
|
|
/* This contains the permutation which separately sorts the two */
|
|
/* sub-problems in D into ascending order. Note that entries in */
|
|
/* the first hlaf of this permutation must first be moved one */
|
|
/* position backward; and entries in the second half */
|
|
/* must first have NL+1 added to their values. */
|
|
|
|
/* COLTYP (workspace/output) INTEGER array, dimension (N) */
|
|
/* As workspace, this will contain a label which will indicate */
|
|
/* which of the following types a column in the U2 matrix or a */
|
|
/* row in the VT2 matrix is: */
|
|
/* 1 : non-zero in the upper half only */
|
|
/* 2 : non-zero in the lower half only */
|
|
/* 3 : dense */
|
|
/* 4 : deflated */
|
|
|
|
/* On exit, it is an array of dimension 4, with COLTYP(I) being */
|
|
/* the dimension of the I-th type columns. */
|
|
|
|
/* INFO (output) INTEGER */
|
|
/* = 0: successful exit. */
|
|
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
|
|
|
|
/* Further Details */
|
|
/* =============== */
|
|
|
|
/* Based on contributions by */
|
|
/* Ming Gu and Huan Ren, Computer Science Division, University of */
|
|
/* California at Berkeley, USA */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Arrays .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
--d__;
|
|
--z__;
|
|
u_dim1 = *ldu;
|
|
u_offset = 1 + u_dim1;
|
|
u -= u_offset;
|
|
vt_dim1 = *ldvt;
|
|
vt_offset = 1 + vt_dim1;
|
|
vt -= vt_offset;
|
|
--dsigma;
|
|
u2_dim1 = *ldu2;
|
|
u2_offset = 1 + u2_dim1;
|
|
u2 -= u2_offset;
|
|
vt2_dim1 = *ldvt2;
|
|
vt2_offset = 1 + vt2_dim1;
|
|
vt2 -= vt2_offset;
|
|
--idxp;
|
|
--idx;
|
|
--idxc;
|
|
--idxq;
|
|
--coltyp;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
|
|
if (*nl < 1) {
|
|
*info = -1;
|
|
} else if (*nr < 1) {
|
|
*info = -2;
|
|
} else if (*sqre != 1 && *sqre != 0) {
|
|
*info = -3;
|
|
}
|
|
|
|
n = *nl + *nr + 1;
|
|
m = n + *sqre;
|
|
|
|
if (*ldu < n) {
|
|
*info = -10;
|
|
} else if (*ldvt < m) {
|
|
*info = -12;
|
|
} else if (*ldu2 < n) {
|
|
*info = -15;
|
|
} else if (*ldvt2 < m) {
|
|
*info = -17;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("SLASD2", &i__1);
|
|
return 0;
|
|
}
|
|
|
|
nlp1 = *nl + 1;
|
|
nlp2 = *nl + 2;
|
|
|
|
/* Generate the first part of the vector Z; and move the singular */
|
|
/* values in the first part of D one position backward. */
|
|
|
|
z1 = *alpha * vt[nlp1 + nlp1 * vt_dim1];
|
|
z__[1] = z1;
|
|
for (i__ = *nl; i__ >= 1; --i__) {
|
|
z__[i__ + 1] = *alpha * vt[i__ + nlp1 * vt_dim1];
|
|
d__[i__ + 1] = d__[i__];
|
|
idxq[i__ + 1] = idxq[i__] + 1;
|
|
/* L10: */
|
|
}
|
|
|
|
/* Generate the second part of the vector Z. */
|
|
|
|
i__1 = m;
|
|
for (i__ = nlp2; i__ <= i__1; ++i__) {
|
|
z__[i__] = *beta * vt[i__ + nlp2 * vt_dim1];
|
|
/* L20: */
|
|
}
|
|
|
|
/* Initialize some reference arrays. */
|
|
|
|
i__1 = nlp1;
|
|
for (i__ = 2; i__ <= i__1; ++i__) {
|
|
coltyp[i__] = 1;
|
|
/* L30: */
|
|
}
|
|
i__1 = n;
|
|
for (i__ = nlp2; i__ <= i__1; ++i__) {
|
|
coltyp[i__] = 2;
|
|
/* L40: */
|
|
}
|
|
|
|
/* Sort the singular values into increasing order */
|
|
|
|
i__1 = n;
|
|
for (i__ = nlp2; i__ <= i__1; ++i__) {
|
|
idxq[i__] += nlp1;
|
|
/* L50: */
|
|
}
|
|
|
|
/* DSIGMA, IDXC, IDXC, and the first column of U2 */
|
|
/* are used as storage space. */
|
|
|
|
i__1 = n;
|
|
for (i__ = 2; i__ <= i__1; ++i__) {
|
|
dsigma[i__] = d__[idxq[i__]];
|
|
u2[i__ + u2_dim1] = z__[idxq[i__]];
|
|
idxc[i__] = coltyp[idxq[i__]];
|
|
/* L60: */
|
|
}
|
|
|
|
slamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]);
|
|
|
|
i__1 = n;
|
|
for (i__ = 2; i__ <= i__1; ++i__) {
|
|
idxi = idx[i__] + 1;
|
|
d__[i__] = dsigma[idxi];
|
|
z__[i__] = u2[idxi + u2_dim1];
|
|
coltyp[i__] = idxc[idxi];
|
|
/* L70: */
|
|
}
|
|
|
|
/* Calculate the allowable deflation tolerance */
|
|
|
|
eps = slamch_("Epsilon");
|
|
/* Computing MAX */
|
|
r__1 = dabs(*alpha), r__2 = dabs(*beta);
|
|
tol = dmax(r__1,r__2);
|
|
/* Computing MAX */
|
|
r__2 = (r__1 = d__[n], dabs(r__1));
|
|
tol = eps * 8.f * dmax(r__2,tol);
|
|
|
|
/* There are 2 kinds of deflation -- first a value in the z-vector */
|
|
/* is small, second two (or more) singular values are very close */
|
|
/* together (their difference is small). */
|
|
|
|
/* If the value in the z-vector is small, we simply permute the */
|
|
/* array so that the corresponding singular value is moved to the */
|
|
/* end. */
|
|
|
|
/* If two values in the D-vector are close, we perform a two-sided */
|
|
/* rotation designed to make one of the corresponding z-vector */
|
|
/* entries zero, and then permute the array so that the deflated */
|
|
/* singular value is moved to the end. */
|
|
|
|
/* If there are multiple singular values then the problem deflates. */
|
|
/* Here the number of equal singular values are found. As each equal */
|
|
/* singular value is found, an elementary reflector is computed to */
|
|
/* rotate the corresponding singular subspace so that the */
|
|
/* corresponding components of Z are zero in this new basis. */
|
|
|
|
*k = 1;
|
|
k2 = n + 1;
|
|
i__1 = n;
|
|
for (j = 2; j <= i__1; ++j) {
|
|
if ((r__1 = z__[j], dabs(r__1)) <= tol) {
|
|
|
|
/* Deflate due to small z component. */
|
|
|
|
--k2;
|
|
idxp[k2] = j;
|
|
coltyp[j] = 4;
|
|
if (j == n) {
|
|
goto L120;
|
|
}
|
|
} else {
|
|
jprev = j;
|
|
goto L90;
|
|
}
|
|
/* L80: */
|
|
}
|
|
L90:
|
|
j = jprev;
|
|
L100:
|
|
++j;
|
|
if (j > n) {
|
|
goto L110;
|
|
}
|
|
if ((r__1 = z__[j], dabs(r__1)) <= tol) {
|
|
|
|
/* Deflate due to small z component. */
|
|
|
|
--k2;
|
|
idxp[k2] = j;
|
|
coltyp[j] = 4;
|
|
} else {
|
|
|
|
/* Check if singular values are close enough to allow deflation. */
|
|
|
|
if ((r__1 = d__[j] - d__[jprev], dabs(r__1)) <= tol) {
|
|
|
|
/* Deflation is possible. */
|
|
|
|
s = z__[jprev];
|
|
c__ = z__[j];
|
|
|
|
/* Find sqrt(a**2+b**2) without overflow or */
|
|
/* destructive underflow. */
|
|
|
|
tau = slapy2_(&c__, &s);
|
|
c__ /= tau;
|
|
s = -s / tau;
|
|
z__[j] = tau;
|
|
z__[jprev] = 0.f;
|
|
|
|
/* Apply back the Givens rotation to the left and right */
|
|
/* singular vector matrices. */
|
|
|
|
idxjp = idxq[idx[jprev] + 1];
|
|
idxj = idxq[idx[j] + 1];
|
|
if (idxjp <= nlp1) {
|
|
--idxjp;
|
|
}
|
|
if (idxj <= nlp1) {
|
|
--idxj;
|
|
}
|
|
srot_(&n, &u[idxjp * u_dim1 + 1], &c__1, &u[idxj * u_dim1 + 1], &
|
|
c__1, &c__, &s);
|
|
srot_(&m, &vt[idxjp + vt_dim1], ldvt, &vt[idxj + vt_dim1], ldvt, &
|
|
c__, &s);
|
|
if (coltyp[j] != coltyp[jprev]) {
|
|
coltyp[j] = 3;
|
|
}
|
|
coltyp[jprev] = 4;
|
|
--k2;
|
|
idxp[k2] = jprev;
|
|
jprev = j;
|
|
} else {
|
|
++(*k);
|
|
u2[*k + u2_dim1] = z__[jprev];
|
|
dsigma[*k] = d__[jprev];
|
|
idxp[*k] = jprev;
|
|
jprev = j;
|
|
}
|
|
}
|
|
goto L100;
|
|
L110:
|
|
|
|
/* Record the last singular value. */
|
|
|
|
++(*k);
|
|
u2[*k + u2_dim1] = z__[jprev];
|
|
dsigma[*k] = d__[jprev];
|
|
idxp[*k] = jprev;
|
|
|
|
L120:
|
|
|
|
/* Count up the total number of the various types of columns, then */
|
|
/* form a permutation which positions the four column types into */
|
|
/* four groups of uniform structure (although one or more of these */
|
|
/* groups may be empty). */
|
|
|
|
for (j = 1; j <= 4; ++j) {
|
|
ctot[j - 1] = 0;
|
|
/* L130: */
|
|
}
|
|
i__1 = n;
|
|
for (j = 2; j <= i__1; ++j) {
|
|
ct = coltyp[j];
|
|
++ctot[ct - 1];
|
|
/* L140: */
|
|
}
|
|
|
|
/* PSM(*) = Position in SubMatrix (of types 1 through 4) */
|
|
|
|
psm[0] = 2;
|
|
psm[1] = ctot[0] + 2;
|
|
psm[2] = psm[1] + ctot[1];
|
|
psm[3] = psm[2] + ctot[2];
|
|
|
|
/* Fill out the IDXC array so that the permutation which it induces */
|
|
/* will place all type-1 columns first, all type-2 columns next, */
|
|
/* then all type-3's, and finally all type-4's, starting from the */
|
|
/* second column. This applies similarly to the rows of VT. */
|
|
|
|
i__1 = n;
|
|
for (j = 2; j <= i__1; ++j) {
|
|
jp = idxp[j];
|
|
ct = coltyp[jp];
|
|
idxc[psm[ct - 1]] = j;
|
|
++psm[ct - 1];
|
|
/* L150: */
|
|
}
|
|
|
|
/* Sort the singular values and corresponding singular vectors into */
|
|
/* DSIGMA, U2, and VT2 respectively. The singular values/vectors */
|
|
/* which were not deflated go into the first K slots of DSIGMA, U2, */
|
|
/* and VT2 respectively, while those which were deflated go into the */
|
|
/* last N - K slots, except that the first column/row will be treated */
|
|
/* separately. */
|
|
|
|
i__1 = n;
|
|
for (j = 2; j <= i__1; ++j) {
|
|
jp = idxp[j];
|
|
dsigma[j] = d__[jp];
|
|
idxj = idxq[idx[idxp[idxc[j]]] + 1];
|
|
if (idxj <= nlp1) {
|
|
--idxj;
|
|
}
|
|
scopy_(&n, &u[idxj * u_dim1 + 1], &c__1, &u2[j * u2_dim1 + 1], &c__1);
|
|
scopy_(&m, &vt[idxj + vt_dim1], ldvt, &vt2[j + vt2_dim1], ldvt2);
|
|
/* L160: */
|
|
}
|
|
|
|
/* Determine DSIGMA(1), DSIGMA(2) and Z(1) */
|
|
|
|
dsigma[1] = 0.f;
|
|
hlftol = tol / 2.f;
|
|
if (dabs(dsigma[2]) <= hlftol) {
|
|
dsigma[2] = hlftol;
|
|
}
|
|
if (m > n) {
|
|
z__[1] = slapy2_(&z1, &z__[m]);
|
|
if (z__[1] <= tol) {
|
|
c__ = 1.f;
|
|
s = 0.f;
|
|
z__[1] = tol;
|
|
} else {
|
|
c__ = z1 / z__[1];
|
|
s = z__[m] / z__[1];
|
|
}
|
|
} else {
|
|
if (dabs(z1) <= tol) {
|
|
z__[1] = tol;
|
|
} else {
|
|
z__[1] = z1;
|
|
}
|
|
}
|
|
|
|
/* Move the rest of the updating row to Z. */
|
|
|
|
i__1 = *k - 1;
|
|
scopy_(&i__1, &u2[u2_dim1 + 2], &c__1, &z__[2], &c__1);
|
|
|
|
/* Determine the first column of U2, the first row of VT2 and the */
|
|
/* last row of VT. */
|
|
|
|
slaset_("A", &n, &c__1, &c_b30, &c_b30, &u2[u2_offset], ldu2);
|
|
u2[nlp1 + u2_dim1] = 1.f;
|
|
if (m > n) {
|
|
i__1 = nlp1;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
vt[m + i__ * vt_dim1] = -s * vt[nlp1 + i__ * vt_dim1];
|
|
vt2[i__ * vt2_dim1 + 1] = c__ * vt[nlp1 + i__ * vt_dim1];
|
|
/* L170: */
|
|
}
|
|
i__1 = m;
|
|
for (i__ = nlp2; i__ <= i__1; ++i__) {
|
|
vt2[i__ * vt2_dim1 + 1] = s * vt[m + i__ * vt_dim1];
|
|
vt[m + i__ * vt_dim1] = c__ * vt[m + i__ * vt_dim1];
|
|
/* L180: */
|
|
}
|
|
} else {
|
|
scopy_(&m, &vt[nlp1 + vt_dim1], ldvt, &vt2[vt2_dim1 + 1], ldvt2);
|
|
}
|
|
if (m > n) {
|
|
scopy_(&m, &vt[m + vt_dim1], ldvt, &vt2[m + vt2_dim1], ldvt2);
|
|
}
|
|
|
|
/* The deflated singular values and their corresponding vectors go */
|
|
/* into the back of D, U, and V respectively. */
|
|
|
|
if (n > *k) {
|
|
i__1 = n - *k;
|
|
scopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1);
|
|
i__1 = n - *k;
|
|
slacpy_("A", &n, &i__1, &u2[(*k + 1) * u2_dim1 + 1], ldu2, &u[(*k + 1)
|
|
* u_dim1 + 1], ldu);
|
|
i__1 = n - *k;
|
|
slacpy_("A", &i__1, &m, &vt2[*k + 1 + vt2_dim1], ldvt2, &vt[*k + 1 +
|
|
vt_dim1], ldvt);
|
|
}
|
|
|
|
/* Copy CTOT into COLTYP for referencing in SLASD3. */
|
|
|
|
for (j = 1; j <= 4; ++j) {
|
|
coltyp[j] = ctot[j - 1];
|
|
/* L190: */
|
|
}
|
|
|
|
return 0;
|
|
|
|
/* End of SLASD2 */
|
|
|
|
} /* slasd2_ */
|