opencv/modules/cudalegacy/perf/perf_labeling.cpp
Alexander Alekhin 4a297a2443 ts: refactor OpenCV tests
- removed tr1 usage (dropped in C++17)
- moved includes of vector/map/iostream/limits into ts.hpp
- require opencv_test + anonymous namespace (added compile check)
- fixed norm() usage (must be from cvtest::norm for checks) and other conflict functions
- added missing license headers
2018-02-03 19:39:47 +00:00

196 lines
5.9 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"
namespace opencv_test { namespace {
DEF_PARAM_TEST_1(Image, string);
struct GreedyLabeling
{
struct dot
{
int x;
int y;
static dot make(int i, int j)
{
dot d; d.x = i; d.y = j;
return d;
}
};
struct InInterval
{
InInterval(const int& _lo, const int& _hi) : lo(-_lo), hi(_hi) {}
const int lo, hi;
bool operator() (const unsigned char a, const unsigned char b) const
{
int d = a - b;
return lo <= d && d <= hi;
}
private:
InInterval& operator=(const InInterval&);
};
GreedyLabeling(cv::Mat img)
: image(img), _labels(image.size(), CV_32SC1, cv::Scalar::all(-1)) {stack = new dot[image.cols * image.rows];}
~GreedyLabeling(){delete[] stack;}
void operator() (cv::Mat labels) const
{
labels.setTo(cv::Scalar::all(-1));
InInterval inInt(0, 2);
int cc = -1;
int* dist_labels = (int*)labels.data;
int pitch = static_cast<int>(labels.step1());
unsigned char* source = (unsigned char*)image.data;
int width = image.cols;
int height = image.rows;
for (int j = 0; j < image.rows; ++j)
for (int i = 0; i < image.cols; ++i)
{
if (dist_labels[j * pitch + i] != -1) continue;
dot* top = stack;
dot p = dot::make(i, j);
cc++;
dist_labels[j * pitch + i] = cc;
while (top >= stack)
{
int* dl = &dist_labels[p.y * pitch + p.x];
unsigned char* sp = &source[p.y * image.step1() + p.x];
dl[0] = cc;
//right
if( p.x < (width - 1) && dl[ +1] == -1 && inInt(sp[0], sp[+1]))
*top++ = dot::make(p.x + 1, p.y);
//left
if( p.x > 0 && dl[-1] == -1 && inInt(sp[0], sp[-1]))
*top++ = dot::make(p.x - 1, p.y);
//bottom
if( p.y < (height - 1) && dl[+pitch] == -1 && inInt(sp[0], sp[+image.step1()]))
*top++ = dot::make(p.x, p.y + 1);
//top
if( p.y > 0 && dl[-pitch] == -1 && inInt(sp[0], sp[-static_cast<int>(image.step1())]))
*top++ = dot::make(p.x, p.y - 1);
p = *--top;
}
}
}
cv::Mat image;
cv::Mat _labels;
dot* stack;
};
PERF_TEST_P(Image, DISABLED_Labeling_ConnectivityMask,
Values<string>("gpu/labeling/aloe-disp.png"))
{
declare.time(1.0);
const cv::Mat image = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(image.empty());
if (PERF_RUN_CUDA())
{
cv::cuda::GpuMat d_image(image);
cv::cuda::GpuMat mask;
TEST_CYCLE() cv::cuda::connectivityMask(d_image, mask, cv::Scalar::all(0), cv::Scalar::all(2));
CUDA_SANITY_CHECK(mask);
}
else
{
FAIL_NO_CPU();
}
}
PERF_TEST_P(Image, DISABLED_Labeling_ConnectedComponents,
Values<string>("gpu/labeling/aloe-disp.png"))
{
declare.time(1.0);
const cv::Mat image = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(image.empty());
if (PERF_RUN_CUDA())
{
cv::cuda::GpuMat d_mask;
cv::cuda::connectivityMask(cv::cuda::GpuMat(image), d_mask, cv::Scalar::all(0), cv::Scalar::all(2));
cv::cuda::GpuMat components;
TEST_CYCLE() cv::cuda::labelComponents(d_mask, components);
CUDA_SANITY_CHECK(components);
}
else
{
GreedyLabeling host(image);
TEST_CYCLE() host(host._labels);
cv::Mat components = host._labels;
CPU_SANITY_CHECK(components);
}
}
}} // namespace