mirror of
https://github.com/opencv/opencv.git
synced 2025-01-22 17:43:12 +08:00
b4a4a05bdc
Additional notes with this commit: 1. Add cornerHarris_dxdy and cornerMinEigenVal_dxdy to get the interim dx and dy output of Sobel operator; 2. Add minMax_buf to allow user to reuse buffers in minMax; 3. Fix an error when either min or max pointer fed into minMax is NULL; 4. Corner sorter temporarily uses C++ STL's quick sort. A parallel selection sort in OpneCL is contained in the implementation but disabled due to poor performance at the moment. 5. Accuracy test for ocl gfft.
278 lines
8.2 KiB
C++
278 lines
8.2 KiB
C++
///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
|
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// @Authors
|
|
//
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other oclMaterials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include <iomanip>
|
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
using namespace cv;
|
|
using namespace cv::ocl;
|
|
using namespace cvtest;
|
|
using namespace testing;
|
|
using namespace std;
|
|
|
|
extern string workdir;
|
|
|
|
|
|
//////////////////////////////////////////////////////
|
|
// GoodFeaturesToTrack
|
|
namespace
|
|
{
|
|
IMPLEMENT_PARAM_CLASS(MinDistance, double)
|
|
}
|
|
PARAM_TEST_CASE(GoodFeaturesToTrack, MinDistance)
|
|
{
|
|
double minDistance;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
minDistance = GET_PARAM(0);
|
|
}
|
|
};
|
|
|
|
TEST_P(GoodFeaturesToTrack, Accuracy)
|
|
{
|
|
cv::Mat frame = readImage(workdir + "../gpu/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
|
|
ASSERT_FALSE(frame.empty());
|
|
|
|
int maxCorners = 1000;
|
|
double qualityLevel = 0.01;
|
|
|
|
cv::ocl::GoodFeaturesToTrackDetector_OCL detector(maxCorners, qualityLevel, minDistance);
|
|
|
|
cv::ocl::oclMat d_pts;
|
|
detector(oclMat(frame), d_pts);
|
|
|
|
ASSERT_FALSE(d_pts.empty());
|
|
|
|
std::vector<cv::Point2f> pts(d_pts.cols);
|
|
|
|
detector.downloadPoints(d_pts, pts);
|
|
|
|
std::vector<cv::Point2f> pts_gold;
|
|
cv::goodFeaturesToTrack(frame, pts_gold, maxCorners, qualityLevel, minDistance);
|
|
|
|
ASSERT_EQ(pts_gold.size(), pts.size());
|
|
|
|
size_t mistmatch = 0;
|
|
for (size_t i = 0; i < pts.size(); ++i)
|
|
{
|
|
cv::Point2i a = pts_gold[i];
|
|
cv::Point2i b = pts[i];
|
|
|
|
bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1;
|
|
|
|
if (!eq)
|
|
++mistmatch;
|
|
}
|
|
|
|
double bad_ratio = static_cast<double>(mistmatch) / pts.size();
|
|
|
|
ASSERT_LE(bad_ratio, 0.01);
|
|
}
|
|
|
|
TEST_P(GoodFeaturesToTrack, EmptyCorners)
|
|
{
|
|
int maxCorners = 1000;
|
|
double qualityLevel = 0.01;
|
|
|
|
cv::ocl::GoodFeaturesToTrackDetector_OCL detector(maxCorners, qualityLevel, minDistance);
|
|
|
|
cv::ocl::oclMat src(100, 100, CV_8UC1, cv::Scalar::all(0));
|
|
cv::ocl::oclMat corners(1, maxCorners, CV_32FC2);
|
|
|
|
detector(src, corners);
|
|
|
|
ASSERT_TRUE(corners.empty());
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(OCL_Video, GoodFeaturesToTrack,
|
|
testing::Values(MinDistance(0.0), MinDistance(3.0)));
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
PARAM_TEST_CASE(TVL1, bool)
|
|
{
|
|
bool useRoi;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
useRoi = GET_PARAM(0);
|
|
}
|
|
|
|
};
|
|
|
|
TEST_P(TVL1, Accuracy)
|
|
{
|
|
cv::Mat frame0 = readImage(workdir + "../gpu/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
|
|
ASSERT_FALSE(frame0.empty());
|
|
|
|
cv::Mat frame1 = readImage(workdir + "../gpu/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
|
|
ASSERT_FALSE(frame1.empty());
|
|
|
|
cv::ocl::OpticalFlowDual_TVL1_OCL d_alg;
|
|
cv::RNG &rng = TS::ptr()->get_rng();
|
|
cv::Mat flowx = randomMat(rng, frame0.size(), CV_32FC1, 0, 0, useRoi);
|
|
cv::Mat flowy = randomMat(rng, frame0.size(), CV_32FC1, 0, 0, useRoi);
|
|
cv::ocl::oclMat d_flowx(flowx), d_flowy(flowy);
|
|
d_alg(oclMat(frame0), oclMat(frame1), d_flowx, d_flowy);
|
|
|
|
cv::Ptr<cv::DenseOpticalFlow> alg = cv::createOptFlow_DualTVL1();
|
|
cv::Mat flow;
|
|
alg->calc(frame0, frame1, flow);
|
|
cv::Mat gold[2];
|
|
cv::split(flow, gold);
|
|
|
|
EXPECT_MAT_SIMILAR(gold[0], d_flowx, 3e-3);
|
|
EXPECT_MAT_SIMILAR(gold[1], d_flowy, 3e-3);
|
|
}
|
|
INSTANTIATE_TEST_CASE_P(OCL_Video, TVL1, Values(true, false));
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// PyrLKOpticalFlow
|
|
|
|
PARAM_TEST_CASE(Sparse, bool, bool)
|
|
{
|
|
bool useGray;
|
|
bool UseSmart;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
UseSmart = GET_PARAM(0);
|
|
useGray = GET_PARAM(1);
|
|
}
|
|
};
|
|
|
|
TEST_P(Sparse, Mat)
|
|
{
|
|
cv::Mat frame0 = readImage(workdir + "../gpu/rubberwhale1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
|
|
ASSERT_FALSE(frame0.empty());
|
|
|
|
cv::Mat frame1 = readImage(workdir + "../gpu/rubberwhale2.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
|
|
ASSERT_FALSE(frame1.empty());
|
|
|
|
cv::Mat gray_frame;
|
|
if (useGray)
|
|
gray_frame = frame0;
|
|
else
|
|
cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY);
|
|
|
|
std::vector<cv::Point2f> pts;
|
|
cv::goodFeaturesToTrack(gray_frame, pts, 1000, 0.01, 0.0);
|
|
|
|
cv::ocl::oclMat d_pts;
|
|
cv::Mat pts_mat(1, (int)pts.size(), CV_32FC2, (void *)&pts[0]);
|
|
d_pts.upload(pts_mat);
|
|
|
|
cv::ocl::PyrLKOpticalFlow pyrLK;
|
|
|
|
cv::ocl::oclMat oclFrame0;
|
|
cv::ocl::oclMat oclFrame1;
|
|
cv::ocl::oclMat d_nextPts;
|
|
cv::ocl::oclMat d_status;
|
|
cv::ocl::oclMat d_err;
|
|
|
|
oclFrame0 = frame0;
|
|
oclFrame1 = frame1;
|
|
|
|
pyrLK.sparse(oclFrame0, oclFrame1, d_pts, d_nextPts, d_status, &d_err);
|
|
|
|
std::vector<cv::Point2f> nextPts(d_nextPts.cols);
|
|
cv::Mat nextPts_mat(1, d_nextPts.cols, CV_32FC2, (void *)&nextPts[0]);
|
|
d_nextPts.download(nextPts_mat);
|
|
|
|
std::vector<unsigned char> status(d_status.cols);
|
|
cv::Mat status_mat(1, d_status.cols, CV_8UC1, (void *)&status[0]);
|
|
d_status.download(status_mat);
|
|
|
|
std::vector<float> err(d_err.cols);
|
|
cv::Mat err_mat(1, d_err.cols, CV_32FC1, (void*)&err[0]);
|
|
d_err.download(err_mat);
|
|
|
|
std::vector<cv::Point2f> nextPts_gold;
|
|
std::vector<unsigned char> status_gold;
|
|
std::vector<float> err_gold;
|
|
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts_gold, status_gold, err_gold);
|
|
|
|
ASSERT_EQ(nextPts_gold.size(), nextPts.size());
|
|
ASSERT_EQ(status_gold.size(), status.size());
|
|
|
|
size_t mistmatch = 0;
|
|
for (size_t i = 0; i < nextPts.size(); ++i)
|
|
{
|
|
if (status[i] != status_gold[i])
|
|
{
|
|
++mistmatch;
|
|
continue;
|
|
}
|
|
|
|
if (status[i])
|
|
{
|
|
cv::Point2i a = nextPts[i];
|
|
cv::Point2i b = nextPts_gold[i];
|
|
|
|
bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1;
|
|
//float errdiff = std::abs(err[i] - err_gold[i]);
|
|
float errdiff = 0.0f;
|
|
|
|
if (!eq || errdiff > 1e-1)
|
|
++mistmatch;
|
|
}
|
|
}
|
|
|
|
double bad_ratio = static_cast<double>(mistmatch) / (nextPts.size());
|
|
|
|
ASSERT_LE(bad_ratio, 0.02f);
|
|
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(OCL_Video, Sparse, Combine(
|
|
Values(false, true),
|
|
Values(false, true)));
|
|
|
|
#endif // HAVE_OPENCL
|
|
|