mirror of
https://github.com/opencv/opencv.git
synced 2025-01-23 01:53:13 +08:00
cd0e95de16
* remove overloads with explicit buffer, now BufferPool is used * added async versions for all reduce functions
645 lines
24 KiB
C++
645 lines
24 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace cv::cuda;
|
|
|
|
#if !defined (HAVE_CUDA) || !defined (HAVE_OPENCV_CUDAARITHM) || defined (CUDA_DISABLER)
|
|
|
|
Ptr<cuda::TemplateMatching> cv::cuda::createTemplateMatching(int, int, Size) { throw_no_cuda(); return Ptr<cuda::TemplateMatching>(); }
|
|
|
|
#else
|
|
|
|
namespace cv { namespace cuda { namespace device
|
|
{
|
|
namespace match_template
|
|
{
|
|
void matchTemplateNaive_CCORR_8U(const PtrStepSzb image, const PtrStepSzb templ, PtrStepSzf result, int cn, cudaStream_t stream);
|
|
void matchTemplateNaive_CCORR_32F(const PtrStepSzb image, const PtrStepSzb templ, PtrStepSzf result, int cn, cudaStream_t stream);
|
|
|
|
void matchTemplateNaive_SQDIFF_8U(const PtrStepSzb image, const PtrStepSzb templ, PtrStepSzf result, int cn, cudaStream_t stream);
|
|
void matchTemplateNaive_SQDIFF_32F(const PtrStepSzb image, const PtrStepSzb templ, PtrStepSzf result, int cn, cudaStream_t stream);
|
|
|
|
void matchTemplatePrepared_SQDIFF_8U(int w, int h, const PtrStepSz<double> image_sqsum, double templ_sqsum, PtrStepSzf result,
|
|
int cn, cudaStream_t stream);
|
|
|
|
void matchTemplatePrepared_SQDIFF_NORMED_8U(int w, int h, const PtrStepSz<double> image_sqsum, double templ_sqsum, PtrStepSzf result,
|
|
int cn, cudaStream_t stream);
|
|
|
|
void matchTemplatePrepared_CCOFF_8U(int w, int h, const PtrStepSz<int> image_sum, int templ_sum, PtrStepSzf result, cudaStream_t stream);
|
|
void matchTemplatePrepared_CCOFF_8UC2(
|
|
int w, int h,
|
|
const PtrStepSz<int> image_sum_r,
|
|
const PtrStepSz<int> image_sum_g,
|
|
int templ_sum_r,
|
|
int templ_sum_g,
|
|
PtrStepSzf result, cudaStream_t stream);
|
|
void matchTemplatePrepared_CCOFF_8UC3(
|
|
int w, int h,
|
|
const PtrStepSz<int> image_sum_r,
|
|
const PtrStepSz<int> image_sum_g,
|
|
const PtrStepSz<int> image_sum_b,
|
|
int templ_sum_r,
|
|
int templ_sum_g,
|
|
int templ_sum_b,
|
|
PtrStepSzf result, cudaStream_t stream);
|
|
void matchTemplatePrepared_CCOFF_8UC4(
|
|
int w, int h,
|
|
const PtrStepSz<int> image_sum_r,
|
|
const PtrStepSz<int> image_sum_g,
|
|
const PtrStepSz<int> image_sum_b,
|
|
const PtrStepSz<int> image_sum_a,
|
|
int templ_sum_r,
|
|
int templ_sum_g,
|
|
int templ_sum_b,
|
|
int templ_sum_a,
|
|
PtrStepSzf result, cudaStream_t stream);
|
|
|
|
|
|
void matchTemplatePrepared_CCOFF_NORMED_8U(
|
|
int w, int h, const PtrStepSz<int> image_sum,
|
|
const PtrStepSz<double> image_sqsum,
|
|
int templ_sum, double templ_sqsum,
|
|
PtrStepSzf result, cudaStream_t stream);
|
|
void matchTemplatePrepared_CCOFF_NORMED_8UC2(
|
|
int w, int h,
|
|
const PtrStepSz<int> image_sum_r, const PtrStepSz<double> image_sqsum_r,
|
|
const PtrStepSz<int> image_sum_g, const PtrStepSz<double> image_sqsum_g,
|
|
int templ_sum_r, double templ_sqsum_r,
|
|
int templ_sum_g, double templ_sqsum_g,
|
|
PtrStepSzf result, cudaStream_t stream);
|
|
void matchTemplatePrepared_CCOFF_NORMED_8UC3(
|
|
int w, int h,
|
|
const PtrStepSz<int> image_sum_r, const PtrStepSz<double> image_sqsum_r,
|
|
const PtrStepSz<int> image_sum_g, const PtrStepSz<double> image_sqsum_g,
|
|
const PtrStepSz<int> image_sum_b, const PtrStepSz<double> image_sqsum_b,
|
|
int templ_sum_r, double templ_sqsum_r,
|
|
int templ_sum_g, double templ_sqsum_g,
|
|
int templ_sum_b, double templ_sqsum_b,
|
|
PtrStepSzf result, cudaStream_t stream);
|
|
void matchTemplatePrepared_CCOFF_NORMED_8UC4(
|
|
int w, int h,
|
|
const PtrStepSz<int> image_sum_r, const PtrStepSz<double> image_sqsum_r,
|
|
const PtrStepSz<int> image_sum_g, const PtrStepSz<double> image_sqsum_g,
|
|
const PtrStepSz<int> image_sum_b, const PtrStepSz<double> image_sqsum_b,
|
|
const PtrStepSz<int> image_sum_a, const PtrStepSz<double> image_sqsum_a,
|
|
int templ_sum_r, double templ_sqsum_r,
|
|
int templ_sum_g, double templ_sqsum_g,
|
|
int templ_sum_b, double templ_sqsum_b,
|
|
int templ_sum_a, double templ_sqsum_a,
|
|
PtrStepSzf result, cudaStream_t stream);
|
|
|
|
void normalize_8U(int w, int h, const PtrStepSz<double> image_sqsum,
|
|
double templ_sqsum, PtrStepSzf result, int cn, cudaStream_t stream);
|
|
|
|
void extractFirstChannel_32F(const PtrStepSzb image, PtrStepSzf result, int cn, cudaStream_t stream);
|
|
}
|
|
}}}
|
|
|
|
namespace
|
|
{
|
|
// Evaluates optimal template's area threshold. If
|
|
// template's area is less than the threshold, we use naive match
|
|
// template version, otherwise FFT-based (if available)
|
|
int getTemplateThreshold(int method, int depth)
|
|
{
|
|
switch (method)
|
|
{
|
|
case TM_CCORR:
|
|
if (depth == CV_32F) return 250;
|
|
if (depth == CV_8U) return 300;
|
|
break;
|
|
|
|
case TM_SQDIFF:
|
|
if (depth == CV_8U) return 300;
|
|
break;
|
|
}
|
|
|
|
CV_Error(Error::StsBadArg, "unsupported match template mode");
|
|
return 0;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////
|
|
// CCORR_32F
|
|
|
|
class Match_CCORR_32F : public TemplateMatching
|
|
{
|
|
public:
|
|
explicit Match_CCORR_32F(Size user_block_size);
|
|
|
|
void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null());
|
|
|
|
private:
|
|
Ptr<cuda::Convolution> conv_;
|
|
GpuMat result_;
|
|
};
|
|
|
|
Match_CCORR_32F::Match_CCORR_32F(Size user_block_size)
|
|
{
|
|
conv_ = cuda::createConvolution(user_block_size);
|
|
}
|
|
|
|
void Match_CCORR_32F::match(InputArray _image, InputArray _templ, OutputArray _result, Stream& _stream)
|
|
{
|
|
using namespace cv::cuda::device::match_template;
|
|
|
|
GpuMat image = _image.getGpuMat();
|
|
GpuMat templ = _templ.getGpuMat();
|
|
|
|
CV_Assert( image.depth() == CV_32F );
|
|
CV_Assert( image.type() == templ.type() );
|
|
CV_Assert( image.cols >= templ.cols && image.rows >= templ.rows );
|
|
|
|
cudaStream_t stream = StreamAccessor::getStream(_stream);
|
|
|
|
_result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32FC1);
|
|
GpuMat result = _result.getGpuMat();
|
|
|
|
if (templ.size().area() < getTemplateThreshold(TM_CCORR, CV_32F))
|
|
{
|
|
matchTemplateNaive_CCORR_32F(image, templ, result, image.channels(), stream);
|
|
return;
|
|
}
|
|
|
|
if (image.channels() == 1)
|
|
{
|
|
conv_->convolve(image.reshape(1), templ.reshape(1), result, true, _stream);
|
|
}
|
|
else
|
|
{
|
|
conv_->convolve(image.reshape(1), templ.reshape(1), result_, true, _stream);
|
|
extractFirstChannel_32F(result_, result, image.channels(), stream);
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////
|
|
// CCORR_8U
|
|
|
|
class Match_CCORR_8U : public TemplateMatching
|
|
{
|
|
public:
|
|
explicit Match_CCORR_8U(Size user_block_size) : match32F_(user_block_size)
|
|
{
|
|
}
|
|
|
|
void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null());
|
|
|
|
private:
|
|
GpuMat imagef_, templf_;
|
|
Match_CCORR_32F match32F_;
|
|
};
|
|
|
|
void Match_CCORR_8U::match(InputArray _image, InputArray _templ, OutputArray _result, Stream& stream)
|
|
{
|
|
using namespace cv::cuda::device::match_template;
|
|
|
|
GpuMat image = _image.getGpuMat();
|
|
GpuMat templ = _templ.getGpuMat();
|
|
|
|
CV_Assert( image.depth() == CV_8U );
|
|
CV_Assert( image.type() == templ.type() );
|
|
CV_Assert( image.cols >= templ.cols && image.rows >= templ.rows );
|
|
|
|
if (templ.size().area() < getTemplateThreshold(TM_CCORR, CV_8U))
|
|
{
|
|
_result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32FC1);
|
|
GpuMat result = _result.getGpuMat();
|
|
|
|
matchTemplateNaive_CCORR_8U(image, templ, result, image.channels(), StreamAccessor::getStream(stream));
|
|
return;
|
|
}
|
|
|
|
image.convertTo(imagef_, CV_32F, stream);
|
|
templ.convertTo(templf_, CV_32F, stream);
|
|
|
|
match32F_.match(imagef_, templf_, _result, stream);
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////
|
|
// CCORR_NORMED_8U
|
|
|
|
class Match_CCORR_NORMED_8U : public TemplateMatching
|
|
{
|
|
public:
|
|
explicit Match_CCORR_NORMED_8U(Size user_block_size) : match_CCORR_(user_block_size)
|
|
{
|
|
}
|
|
|
|
void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null());
|
|
|
|
private:
|
|
Match_CCORR_8U match_CCORR_;
|
|
GpuMat image_sqsums_;
|
|
};
|
|
|
|
void Match_CCORR_NORMED_8U::match(InputArray _image, InputArray _templ, OutputArray _result, Stream& stream)
|
|
{
|
|
using namespace cv::cuda::device::match_template;
|
|
|
|
GpuMat image = _image.getGpuMat();
|
|
GpuMat templ = _templ.getGpuMat();
|
|
|
|
CV_Assert( image.depth() == CV_8U );
|
|
CV_Assert( image.type() == templ.type() );
|
|
CV_Assert( image.cols >= templ.cols && image.rows >= templ.rows );
|
|
|
|
match_CCORR_.match(image, templ, _result, stream);
|
|
GpuMat result = _result.getGpuMat();
|
|
|
|
cuda::sqrIntegral(image.reshape(1), image_sqsums_, stream);
|
|
|
|
double templ_sqsum = cuda::sqrSum(templ.reshape(1))[0];
|
|
|
|
normalize_8U(templ.cols, templ.rows, image_sqsums_, templ_sqsum, result, image.channels(), StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////
|
|
// SQDIFF_32F
|
|
|
|
class Match_SQDIFF_32F : public TemplateMatching
|
|
{
|
|
public:
|
|
void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null());
|
|
};
|
|
|
|
void Match_SQDIFF_32F::match(InputArray _image, InputArray _templ, OutputArray _result, Stream& stream)
|
|
{
|
|
using namespace cv::cuda::device::match_template;
|
|
|
|
GpuMat image = _image.getGpuMat();
|
|
GpuMat templ = _templ.getGpuMat();
|
|
|
|
CV_Assert( image.depth() == CV_32F );
|
|
CV_Assert( image.type() == templ.type() );
|
|
CV_Assert( image.cols >= templ.cols && image.rows >= templ.rows );
|
|
|
|
_result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32FC1);
|
|
GpuMat result = _result.getGpuMat();
|
|
|
|
matchTemplateNaive_SQDIFF_32F(image, templ, result, image.channels(), StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////
|
|
// SQDIFF_8U
|
|
|
|
class Match_SQDIFF_8U : public TemplateMatching
|
|
{
|
|
public:
|
|
explicit Match_SQDIFF_8U(Size user_block_size) : match_CCORR_(user_block_size)
|
|
{
|
|
}
|
|
|
|
void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null());
|
|
|
|
private:
|
|
GpuMat image_sqsums_;
|
|
Match_CCORR_8U match_CCORR_;
|
|
};
|
|
|
|
void Match_SQDIFF_8U::match(InputArray _image, InputArray _templ, OutputArray _result, Stream& stream)
|
|
{
|
|
using namespace cv::cuda::device::match_template;
|
|
|
|
GpuMat image = _image.getGpuMat();
|
|
GpuMat templ = _templ.getGpuMat();
|
|
|
|
CV_Assert( image.depth() == CV_8U );
|
|
CV_Assert( image.type() == templ.type() );
|
|
CV_Assert( image.cols >= templ.cols && image.rows >= templ.rows );
|
|
|
|
if (templ.size().area() < getTemplateThreshold(TM_SQDIFF, CV_8U))
|
|
{
|
|
_result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32FC1);
|
|
GpuMat result = _result.getGpuMat();
|
|
|
|
matchTemplateNaive_SQDIFF_8U(image, templ, result, image.channels(), StreamAccessor::getStream(stream));
|
|
return;
|
|
}
|
|
|
|
cuda::sqrIntegral(image.reshape(1), image_sqsums_, stream);
|
|
|
|
double templ_sqsum = cuda::sqrSum(templ.reshape(1))[0];
|
|
|
|
match_CCORR_.match(image, templ, _result, stream);
|
|
GpuMat result = _result.getGpuMat();
|
|
|
|
matchTemplatePrepared_SQDIFF_8U(templ.cols, templ.rows, image_sqsums_, templ_sqsum, result, image.channels(), StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////
|
|
// SQDIFF_NORMED_8U
|
|
|
|
class Match_SQDIFF_NORMED_8U : public TemplateMatching
|
|
{
|
|
public:
|
|
explicit Match_SQDIFF_NORMED_8U(Size user_block_size) : match_CCORR_(user_block_size)
|
|
{
|
|
}
|
|
|
|
void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null());
|
|
|
|
private:
|
|
GpuMat image_sqsums_;
|
|
Match_CCORR_8U match_CCORR_;
|
|
};
|
|
|
|
void Match_SQDIFF_NORMED_8U::match(InputArray _image, InputArray _templ, OutputArray _result, Stream& stream)
|
|
{
|
|
using namespace cv::cuda::device::match_template;
|
|
|
|
GpuMat image = _image.getGpuMat();
|
|
GpuMat templ = _templ.getGpuMat();
|
|
|
|
CV_Assert( image.depth() == CV_8U );
|
|
CV_Assert( image.type() == templ.type() );
|
|
CV_Assert( image.cols >= templ.cols && image.rows >= templ.rows );
|
|
|
|
cuda::sqrIntegral(image.reshape(1), image_sqsums_, stream);
|
|
|
|
double templ_sqsum = cuda::sqrSum(templ.reshape(1))[0];
|
|
|
|
match_CCORR_.match(image, templ, _result, stream);
|
|
GpuMat result = _result.getGpuMat();
|
|
|
|
matchTemplatePrepared_SQDIFF_NORMED_8U(templ.cols, templ.rows, image_sqsums_, templ_sqsum, result, image.channels(), StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////
|
|
// CCOFF_8U
|
|
|
|
class Match_CCOEFF_8U : public TemplateMatching
|
|
{
|
|
public:
|
|
explicit Match_CCOEFF_8U(Size user_block_size) : match_CCORR_(user_block_size)
|
|
{
|
|
}
|
|
|
|
void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null());
|
|
|
|
private:
|
|
std::vector<GpuMat> images_;
|
|
std::vector<GpuMat> image_sums_;
|
|
Match_CCORR_8U match_CCORR_;
|
|
};
|
|
|
|
void Match_CCOEFF_8U::match(InputArray _image, InputArray _templ, OutputArray _result, Stream& stream)
|
|
{
|
|
using namespace cv::cuda::device::match_template;
|
|
|
|
GpuMat image = _image.getGpuMat();
|
|
GpuMat templ = _templ.getGpuMat();
|
|
|
|
CV_Assert( image.depth() == CV_8U );
|
|
CV_Assert( image.type() == templ.type() );
|
|
CV_Assert( image.cols >= templ.cols && image.rows >= templ.rows );
|
|
|
|
match_CCORR_.match(image, templ, _result, stream);
|
|
GpuMat result = _result.getGpuMat();
|
|
|
|
if (image.channels() == 1)
|
|
{
|
|
image_sums_.resize(1);
|
|
cuda::integral(image, image_sums_[0], stream);
|
|
|
|
int templ_sum = (int) cuda::sum(templ)[0];
|
|
|
|
matchTemplatePrepared_CCOFF_8U(templ.cols, templ.rows, image_sums_[0], templ_sum, result, StreamAccessor::getStream(stream));
|
|
}
|
|
else
|
|
{
|
|
cuda::split(image, images_);
|
|
|
|
image_sums_.resize(images_.size());
|
|
for (int i = 0; i < image.channels(); ++i)
|
|
cuda::integral(images_[i], image_sums_[i], stream);
|
|
|
|
Scalar templ_sum = cuda::sum(templ);
|
|
|
|
switch (image.channels())
|
|
{
|
|
case 2:
|
|
matchTemplatePrepared_CCOFF_8UC2(
|
|
templ.cols, templ.rows, image_sums_[0], image_sums_[1],
|
|
(int) templ_sum[0], (int) templ_sum[1],
|
|
result, StreamAccessor::getStream(stream));
|
|
break;
|
|
case 3:
|
|
matchTemplatePrepared_CCOFF_8UC3(
|
|
templ.cols, templ.rows, image_sums_[0], image_sums_[1], image_sums_[2],
|
|
(int) templ_sum[0], (int) templ_sum[1], (int) templ_sum[2],
|
|
result, StreamAccessor::getStream(stream));
|
|
break;
|
|
case 4:
|
|
matchTemplatePrepared_CCOFF_8UC4(
|
|
templ.cols, templ.rows, image_sums_[0], image_sums_[1], image_sums_[2], image_sums_[3],
|
|
(int) templ_sum[0], (int) templ_sum[1], (int) templ_sum[2], (int) templ_sum[3],
|
|
result, StreamAccessor::getStream(stream));
|
|
break;
|
|
default:
|
|
CV_Error(Error::StsBadArg, "unsupported number of channels");
|
|
}
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////
|
|
// CCOFF_NORMED_8U
|
|
|
|
class Match_CCOEFF_NORMED_8U : public TemplateMatching
|
|
{
|
|
public:
|
|
explicit Match_CCOEFF_NORMED_8U(Size user_block_size) : match_CCORR_32F_(user_block_size)
|
|
{
|
|
}
|
|
|
|
void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null());
|
|
|
|
private:
|
|
GpuMat imagef_, templf_;
|
|
Match_CCORR_32F match_CCORR_32F_;
|
|
std::vector<GpuMat> images_;
|
|
std::vector<GpuMat> image_sums_;
|
|
std::vector<GpuMat> image_sqsums_;
|
|
};
|
|
|
|
void Match_CCOEFF_NORMED_8U::match(InputArray _image, InputArray _templ, OutputArray _result, Stream& stream)
|
|
{
|
|
using namespace cv::cuda::device::match_template;
|
|
|
|
GpuMat image = _image.getGpuMat();
|
|
GpuMat templ = _templ.getGpuMat();
|
|
|
|
CV_Assert( image.depth() == CV_8U );
|
|
CV_Assert( image.type() == templ.type() );
|
|
CV_Assert( image.cols >= templ.cols && image.rows >= templ.rows );
|
|
|
|
image.convertTo(imagef_, CV_32F, stream);
|
|
templ.convertTo(templf_, CV_32F, stream);
|
|
|
|
match_CCORR_32F_.match(imagef_, templf_, _result, stream);
|
|
GpuMat result = _result.getGpuMat();
|
|
|
|
if (image.channels() == 1)
|
|
{
|
|
image_sums_.resize(1);
|
|
cuda::integral(image, image_sums_[0], stream);
|
|
|
|
image_sqsums_.resize(1);
|
|
cuda::sqrIntegral(image, image_sqsums_[0], stream);
|
|
|
|
int templ_sum = (int) cuda::sum(templ)[0];
|
|
double templ_sqsum = cuda::sqrSum(templ)[0];
|
|
|
|
matchTemplatePrepared_CCOFF_NORMED_8U(
|
|
templ.cols, templ.rows, image_sums_[0], image_sqsums_[0],
|
|
templ_sum, templ_sqsum, result, StreamAccessor::getStream(stream));
|
|
}
|
|
else
|
|
{
|
|
cuda::split(image, images_);
|
|
|
|
image_sums_.resize(images_.size());
|
|
image_sqsums_.resize(images_.size());
|
|
for (int i = 0; i < image.channels(); ++i)
|
|
{
|
|
cuda::integral(images_[i], image_sums_[i], stream);
|
|
cuda::sqrIntegral(images_[i], image_sqsums_[i], stream);
|
|
}
|
|
|
|
Scalar templ_sum = cuda::sum(templ);
|
|
Scalar templ_sqsum = cuda::sqrSum(templ);
|
|
|
|
switch (image.channels())
|
|
{
|
|
case 2:
|
|
matchTemplatePrepared_CCOFF_NORMED_8UC2(
|
|
templ.cols, templ.rows,
|
|
image_sums_[0], image_sqsums_[0],
|
|
image_sums_[1], image_sqsums_[1],
|
|
(int)templ_sum[0], templ_sqsum[0],
|
|
(int)templ_sum[1], templ_sqsum[1],
|
|
result, StreamAccessor::getStream(stream));
|
|
break;
|
|
case 3:
|
|
matchTemplatePrepared_CCOFF_NORMED_8UC3(
|
|
templ.cols, templ.rows,
|
|
image_sums_[0], image_sqsums_[0],
|
|
image_sums_[1], image_sqsums_[1],
|
|
image_sums_[2], image_sqsums_[2],
|
|
(int)templ_sum[0], templ_sqsum[0],
|
|
(int)templ_sum[1], templ_sqsum[1],
|
|
(int)templ_sum[2], templ_sqsum[2],
|
|
result, StreamAccessor::getStream(stream));
|
|
break;
|
|
case 4:
|
|
matchTemplatePrepared_CCOFF_NORMED_8UC4(
|
|
templ.cols, templ.rows,
|
|
image_sums_[0], image_sqsums_[0],
|
|
image_sums_[1], image_sqsums_[1],
|
|
image_sums_[2], image_sqsums_[2],
|
|
image_sums_[3], image_sqsums_[3],
|
|
(int)templ_sum[0], templ_sqsum[0],
|
|
(int)templ_sum[1], templ_sqsum[1],
|
|
(int)templ_sum[2], templ_sqsum[2],
|
|
(int)templ_sum[3], templ_sqsum[3],
|
|
result, StreamAccessor::getStream(stream));
|
|
break;
|
|
default:
|
|
CV_Error(Error::StsBadArg, "unsupported number of channels");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Ptr<cuda::TemplateMatching> cv::cuda::createTemplateMatching(int srcType, int method, Size user_block_size)
|
|
{
|
|
const int sdepth = CV_MAT_DEPTH(srcType);
|
|
|
|
CV_Assert( sdepth == CV_8U || sdepth == CV_32F );
|
|
|
|
if (sdepth == CV_32F)
|
|
{
|
|
switch (method)
|
|
{
|
|
case TM_SQDIFF:
|
|
return makePtr<Match_SQDIFF_32F>();
|
|
|
|
case TM_CCORR:
|
|
return makePtr<Match_CCORR_32F>(user_block_size);
|
|
|
|
default:
|
|
CV_Error( Error::StsBadFlag, "Unsopported method" );
|
|
return Ptr<cuda::TemplateMatching>();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
switch (method)
|
|
{
|
|
case TM_SQDIFF:
|
|
return makePtr<Match_SQDIFF_8U>(user_block_size);
|
|
|
|
case TM_SQDIFF_NORMED:
|
|
return makePtr<Match_SQDIFF_NORMED_8U>(user_block_size);
|
|
|
|
case TM_CCORR:
|
|
return makePtr<Match_CCORR_8U>(user_block_size);
|
|
|
|
case TM_CCORR_NORMED:
|
|
return makePtr<Match_CCORR_NORMED_8U>(user_block_size);
|
|
|
|
case TM_CCOEFF:
|
|
return makePtr<Match_CCOEFF_8U>(user_block_size);
|
|
|
|
case TM_CCOEFF_NORMED:
|
|
return makePtr<Match_CCOEFF_NORMED_8U>(user_block_size);
|
|
|
|
default:
|
|
CV_Error( Error::StsBadFlag, "Unsopported method" );
|
|
return Ptr<cuda::TemplateMatching>();
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|