opencv/modules/cudalegacy/include/opencv2/cudalegacy/NCVHaarObjectDetection.hpp
Maksim Shabunin 771af4f32d Some changes to support mingw-w64
- IPP is disabled by default when compiler is mingw (couldn't make it
work)
- fixed some warnings
- fixed some `__GNUC__` version checks (for correctness and convenience)
- removed UTF-8 BOM from hough.cpp (fixes #5253)
2015-09-01 00:59:08 +03:00

464 lines
18 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
////////////////////////////////////////////////////////////////////////////////
//
// NVIDIA CUDA implementation of Viola-Jones Object Detection Framework
//
// The algorithm and code are explained in the upcoming GPU Computing Gems
// chapter in detail:
//
// Anton Obukhov, "Haar Classifiers for Object Detection with CUDA"
// PDF URL placeholder
// email: aobukhov@nvidia.com, devsupport@nvidia.com
//
// Credits for help with the code to:
// Alexey Mendelenko, Cyril Crassin, and Mikhail Smirnov.
//
////////////////////////////////////////////////////////////////////////////////
#ifndef _ncvhaarobjectdetection_hpp_
#define _ncvhaarobjectdetection_hpp_
#include "opencv2/cudalegacy/NCV.hpp"
//! @addtogroup cudalegacy
//! @{
//==============================================================================
//
// Guaranteed size cross-platform classifier structures
//
//==============================================================================
#if defined __GNUC__ && (__GNUC__*100 + __GNUC_MINOR__ > 204)
typedef Ncv32f __attribute__((__may_alias__)) Ncv32f_a;
#else
typedef Ncv32f Ncv32f_a;
#endif
struct HaarFeature64
{
uint2 _ui2;
#define HaarFeature64_CreateCheck_MaxRectField 0xFF
__host__ NCVStatus setRect(Ncv32u rectX, Ncv32u rectY, Ncv32u rectWidth, Ncv32u rectHeight, Ncv32u /*clsWidth*/, Ncv32u /*clsHeight*/)
{
ncvAssertReturn(rectWidth <= HaarFeature64_CreateCheck_MaxRectField && rectHeight <= HaarFeature64_CreateCheck_MaxRectField, NCV_HAAR_TOO_LARGE_FEATURES);
((NcvRect8u*)&(this->_ui2.x))->x = (Ncv8u)rectX;
((NcvRect8u*)&(this->_ui2.x))->y = (Ncv8u)rectY;
((NcvRect8u*)&(this->_ui2.x))->width = (Ncv8u)rectWidth;
((NcvRect8u*)&(this->_ui2.x))->height = (Ncv8u)rectHeight;
return NCV_SUCCESS;
}
__host__ NCVStatus setWeight(Ncv32f weight)
{
((Ncv32f_a*)&(this->_ui2.y))[0] = weight;
return NCV_SUCCESS;
}
__device__ __host__ void getRect(Ncv32u *rectX, Ncv32u *rectY, Ncv32u *rectWidth, Ncv32u *rectHeight)
{
NcvRect8u tmpRect = *(NcvRect8u*)(&this->_ui2.x);
*rectX = tmpRect.x;
*rectY = tmpRect.y;
*rectWidth = tmpRect.width;
*rectHeight = tmpRect.height;
}
__device__ __host__ Ncv32f getWeight(void)
{
return *(Ncv32f_a*)(&this->_ui2.y);
}
};
struct HaarFeatureDescriptor32
{
private:
#define HaarFeatureDescriptor32_Interpret_MaskFlagTilted 0x80000000
#define HaarFeatureDescriptor32_Interpret_MaskFlagLeftNodeLeaf 0x40000000
#define HaarFeatureDescriptor32_Interpret_MaskFlagRightNodeLeaf 0x20000000
#define HaarFeatureDescriptor32_CreateCheck_MaxNumFeatures 0x1F
#define HaarFeatureDescriptor32_NumFeatures_Shift 24
#define HaarFeatureDescriptor32_CreateCheck_MaxFeatureOffset 0x00FFFFFF
Ncv32u desc;
public:
__host__ NCVStatus create(NcvBool bTilted, NcvBool bLeftLeaf, NcvBool bRightLeaf,
Ncv32u numFeatures, Ncv32u offsetFeatures)
{
if (numFeatures > HaarFeatureDescriptor32_CreateCheck_MaxNumFeatures)
{
return NCV_HAAR_TOO_MANY_FEATURES_IN_CLASSIFIER;
}
if (offsetFeatures > HaarFeatureDescriptor32_CreateCheck_MaxFeatureOffset)
{
return NCV_HAAR_TOO_MANY_FEATURES_IN_CASCADE;
}
this->desc = 0;
this->desc |= (bTilted ? HaarFeatureDescriptor32_Interpret_MaskFlagTilted : 0);
this->desc |= (bLeftLeaf ? HaarFeatureDescriptor32_Interpret_MaskFlagLeftNodeLeaf : 0);
this->desc |= (bRightLeaf ? HaarFeatureDescriptor32_Interpret_MaskFlagRightNodeLeaf : 0);
this->desc |= (numFeatures << HaarFeatureDescriptor32_NumFeatures_Shift);
this->desc |= offsetFeatures;
return NCV_SUCCESS;
}
__device__ __host__ NcvBool isTilted(void)
{
return (this->desc & HaarFeatureDescriptor32_Interpret_MaskFlagTilted) != 0;
}
__device__ __host__ NcvBool isLeftNodeLeaf(void)
{
return (this->desc & HaarFeatureDescriptor32_Interpret_MaskFlagLeftNodeLeaf) != 0;
}
__device__ __host__ NcvBool isRightNodeLeaf(void)
{
return (this->desc & HaarFeatureDescriptor32_Interpret_MaskFlagRightNodeLeaf) != 0;
}
__device__ __host__ Ncv32u getNumFeatures(void)
{
return (this->desc >> HaarFeatureDescriptor32_NumFeatures_Shift) & HaarFeatureDescriptor32_CreateCheck_MaxNumFeatures;
}
__device__ __host__ Ncv32u getFeaturesOffset(void)
{
return this->desc & HaarFeatureDescriptor32_CreateCheck_MaxFeatureOffset;
}
};
struct HaarClassifierNodeDescriptor32
{
uint1 _ui1;
__host__ NCVStatus create(Ncv32f leafValue)
{
*(Ncv32f_a *)&this->_ui1 = leafValue;
return NCV_SUCCESS;
}
__host__ NCVStatus create(Ncv32u offsetHaarClassifierNode)
{
this->_ui1.x = offsetHaarClassifierNode;
return NCV_SUCCESS;
}
__host__ Ncv32f getLeafValueHost(void)
{
return *(Ncv32f_a *)&this->_ui1.x;
}
#ifdef __CUDACC__
__device__ Ncv32f getLeafValue(void)
{
return __int_as_float(this->_ui1.x);
}
#endif
__device__ __host__ Ncv32u getNextNodeOffset(void)
{
return this->_ui1.x;
}
};
#if defined __GNUC__ && (__GNUC__*100 + __GNUC_MINOR__ > 204)
typedef Ncv32u __attribute__((__may_alias__)) Ncv32u_a;
#else
typedef Ncv32u Ncv32u_a;
#endif
struct HaarClassifierNode128
{
uint4 _ui4;
__host__ NCVStatus setFeatureDesc(HaarFeatureDescriptor32 f)
{
this->_ui4.x = *(Ncv32u *)&f;
return NCV_SUCCESS;
}
__host__ NCVStatus setThreshold(Ncv32f t)
{
this->_ui4.y = *(Ncv32u_a *)&t;
return NCV_SUCCESS;
}
__host__ NCVStatus setLeftNodeDesc(HaarClassifierNodeDescriptor32 nl)
{
this->_ui4.z = *(Ncv32u_a *)&nl;
return NCV_SUCCESS;
}
__host__ NCVStatus setRightNodeDesc(HaarClassifierNodeDescriptor32 nr)
{
this->_ui4.w = *(Ncv32u_a *)&nr;
return NCV_SUCCESS;
}
__host__ __device__ HaarFeatureDescriptor32 getFeatureDesc(void)
{
return *(HaarFeatureDescriptor32 *)&this->_ui4.x;
}
__host__ __device__ Ncv32f getThreshold(void)
{
return *(Ncv32f_a*)&this->_ui4.y;
}
__host__ __device__ HaarClassifierNodeDescriptor32 getLeftNodeDesc(void)
{
return *(HaarClassifierNodeDescriptor32 *)&this->_ui4.z;
}
__host__ __device__ HaarClassifierNodeDescriptor32 getRightNodeDesc(void)
{
return *(HaarClassifierNodeDescriptor32 *)&this->_ui4.w;
}
};
struct HaarStage64
{
#define HaarStage64_Interpret_MaskRootNodes 0x0000FFFF
#define HaarStage64_Interpret_MaskRootNodeOffset 0xFFFF0000
#define HaarStage64_Interpret_ShiftRootNodeOffset 16
uint2 _ui2;
__host__ NCVStatus setStageThreshold(Ncv32f t)
{
this->_ui2.x = *(Ncv32u_a *)&t;
return NCV_SUCCESS;
}
__host__ NCVStatus setStartClassifierRootNodeOffset(Ncv32u val)
{
if (val > (HaarStage64_Interpret_MaskRootNodeOffset >> HaarStage64_Interpret_ShiftRootNodeOffset))
{
return NCV_HAAR_XML_LOADING_EXCEPTION;
}
this->_ui2.y = (val << HaarStage64_Interpret_ShiftRootNodeOffset) | (this->_ui2.y & HaarStage64_Interpret_MaskRootNodes);
return NCV_SUCCESS;
}
__host__ NCVStatus setNumClassifierRootNodes(Ncv32u val)
{
if (val > HaarStage64_Interpret_MaskRootNodes)
{
return NCV_HAAR_XML_LOADING_EXCEPTION;
}
this->_ui2.y = val | (this->_ui2.y & HaarStage64_Interpret_MaskRootNodeOffset);
return NCV_SUCCESS;
}
__host__ __device__ Ncv32f getStageThreshold(void)
{
return *(Ncv32f_a*)&this->_ui2.x;
}
__host__ __device__ Ncv32u getStartClassifierRootNodeOffset(void)
{
return (this->_ui2.y >> HaarStage64_Interpret_ShiftRootNodeOffset);
}
__host__ __device__ Ncv32u getNumClassifierRootNodes(void)
{
return (this->_ui2.y & HaarStage64_Interpret_MaskRootNodes);
}
};
NCV_CT_ASSERT(sizeof(HaarFeature64) == 8);
NCV_CT_ASSERT(sizeof(HaarFeatureDescriptor32) == 4);
NCV_CT_ASSERT(sizeof(HaarClassifierNodeDescriptor32) == 4);
NCV_CT_ASSERT(sizeof(HaarClassifierNode128) == 16);
NCV_CT_ASSERT(sizeof(HaarStage64) == 8);
//==============================================================================
//
// Classifier cascade descriptor
//
//==============================================================================
struct HaarClassifierCascadeDescriptor
{
Ncv32u NumStages;
Ncv32u NumClassifierRootNodes;
Ncv32u NumClassifierTotalNodes;
Ncv32u NumFeatures;
NcvSize32u ClassifierSize;
NcvBool bNeedsTiltedII;
NcvBool bHasStumpsOnly;
};
//==============================================================================
//
// Functional interface
//
//==============================================================================
enum
{
NCVPipeObjDet_Default = 0x000,
NCVPipeObjDet_UseFairImageScaling = 0x001,
NCVPipeObjDet_FindLargestObject = 0x002,
NCVPipeObjDet_VisualizeInPlace = 0x004,
};
CV_EXPORTS NCVStatus ncvDetectObjectsMultiScale_device(NCVMatrix<Ncv8u> &d_srcImg,
NcvSize32u srcRoi,
NCVVector<NcvRect32u> &d_dstRects,
Ncv32u &dstNumRects,
HaarClassifierCascadeDescriptor &haar,
NCVVector<HaarStage64> &h_HaarStages,
NCVVector<HaarStage64> &d_HaarStages,
NCVVector<HaarClassifierNode128> &d_HaarNodes,
NCVVector<HaarFeature64> &d_HaarFeatures,
NcvSize32u minObjSize,
Ncv32u minNeighbors, //default 4
Ncv32f scaleStep, //default 1.2f
Ncv32u pixelStep, //default 1
Ncv32u flags, //default NCVPipeObjDet_Default
INCVMemAllocator &gpuAllocator,
INCVMemAllocator &cpuAllocator,
cudaDeviceProp &devProp,
cudaStream_t cuStream);
#define OBJDET_MASK_ELEMENT_INVALID_32U 0xFFFFFFFF
#define HAAR_STDDEV_BORDER 1
CV_EXPORTS NCVStatus ncvApplyHaarClassifierCascade_device(NCVMatrix<Ncv32u> &d_integralImage,
NCVMatrix<Ncv32f> &d_weights,
NCVMatrixAlloc<Ncv32u> &d_pixelMask,
Ncv32u &numDetections,
HaarClassifierCascadeDescriptor &haar,
NCVVector<HaarStage64> &h_HaarStages,
NCVVector<HaarStage64> &d_HaarStages,
NCVVector<HaarClassifierNode128> &d_HaarNodes,
NCVVector<HaarFeature64> &d_HaarFeatures,
NcvBool bMaskElements,
NcvSize32u anchorsRoi,
Ncv32u pixelStep,
Ncv32f scaleArea,
INCVMemAllocator &gpuAllocator,
INCVMemAllocator &cpuAllocator,
cudaDeviceProp &devProp,
cudaStream_t cuStream);
CV_EXPORTS NCVStatus ncvApplyHaarClassifierCascade_host(NCVMatrix<Ncv32u> &h_integralImage,
NCVMatrix<Ncv32f> &h_weights,
NCVMatrixAlloc<Ncv32u> &h_pixelMask,
Ncv32u &numDetections,
HaarClassifierCascadeDescriptor &haar,
NCVVector<HaarStage64> &h_HaarStages,
NCVVector<HaarClassifierNode128> &h_HaarNodes,
NCVVector<HaarFeature64> &h_HaarFeatures,
NcvBool bMaskElements,
NcvSize32u anchorsRoi,
Ncv32u pixelStep,
Ncv32f scaleArea);
#define RECT_SIMILARITY_PROPORTION 0.2f
CV_EXPORTS NCVStatus ncvGrowDetectionsVector_device(NCVVector<Ncv32u> &pixelMask,
Ncv32u numPixelMaskDetections,
NCVVector<NcvRect32u> &hypotheses,
Ncv32u &totalDetections,
Ncv32u totalMaxDetections,
Ncv32u rectWidth,
Ncv32u rectHeight,
Ncv32f curScale,
cudaStream_t cuStream);
CV_EXPORTS NCVStatus ncvGrowDetectionsVector_host(NCVVector<Ncv32u> &pixelMask,
Ncv32u numPixelMaskDetections,
NCVVector<NcvRect32u> &hypotheses,
Ncv32u &totalDetections,
Ncv32u totalMaxDetections,
Ncv32u rectWidth,
Ncv32u rectHeight,
Ncv32f curScale);
CV_EXPORTS NCVStatus ncvHaarGetClassifierSize(const cv::String &filename, Ncv32u &numStages,
Ncv32u &numNodes, Ncv32u &numFeatures);
CV_EXPORTS NCVStatus ncvHaarLoadFromFile_host(const cv::String &filename,
HaarClassifierCascadeDescriptor &haar,
NCVVector<HaarStage64> &h_HaarStages,
NCVVector<HaarClassifierNode128> &h_HaarNodes,
NCVVector<HaarFeature64> &h_HaarFeatures);
CV_EXPORTS NCVStatus ncvHaarStoreNVBIN_host(const cv::String &filename,
HaarClassifierCascadeDescriptor haar,
NCVVector<HaarStage64> &h_HaarStages,
NCVVector<HaarClassifierNode128> &h_HaarNodes,
NCVVector<HaarFeature64> &h_HaarFeatures);
//! @}
#endif // _ncvhaarobjectdetection_hpp_