opencv/modules/features2d/test/test_detectors_regression.cpp
Jiri Horner 5f20e802d2 Merge pull request #8869 from hrnr:akaze_part1
[GSOC] Speeding-up AKAZE, part #1 (#8869)

* ts: expand arguments before stringifications in CV_ENUM and CV_FLAGS

added protective macros to always force macro expansion of arguments. This allows using CV_ENUM and CV_FLAGS with macro arguments.

* feature2d: unify perf test

use the same test for all detectors/descriptors we have.

* added AKAZE tests

* features2d: extend perf tests

* add BRISK, KAZE, MSER
* run all extract tests on AKAZE keypoints, so that the test si more comparable for the speed of extraction

* feature2d: rework opencl perf tests

use the same configuration as cpu tests

* feature2d: fix descriptors allocation for AKAZE and KAZE

fix crash when descriptors are UMat

* feature2d: name enum to fix build with older gcc

* Revert "ts: expand arguments before stringifications in CV_ENUM and CV_FLAGS"

This reverts commit 19538cac1e.

This wasn't a great idea after all. There is a lot of flags implemented as #define, that we don't want to expand.

* feature2d: fix expansion problems with CV_ENUM in perf

* expand arguments before passing them to CV_ENUM. This does not need modifications of CV_ENUM.
* added include guards to `perf_feature2d.hpp`

* feature2d: fix crash in AKAZE when using KAZE descriptors

* out-of-bound access in Get_MSURF_Descriptor_64
* this happened reliably when running on provided keypoints (not computed by the same instance)

* feature2d: added regression tests for AKAZE

* test with both MLDB and KAZE keypoints

* feature2d: do not compute keypoints orientation twice

* always compute keypoints orientation, when computing keypoints
* do not recompute keypoint orientation when computing descriptors

this allows to test detection and extraction separately

* features2d: fix crash in AKAZE

* out-of-bound reads near the image edge
* same as the bug in KAZE descriptors

* feature2d: refactor invariance testing

* split detectors and descriptors tests
* rewrite to google test to simplify debugging
* add tests for AKAZE and one test for ORB

* stitching: add tests with AKAZE feature finder

* added basic stitching cpu and ocl tests
* fix bug in AKAZE wrapper for stitching pipeline causing lots of
! OPENCV warning: getUMat()/getMat() call chain possible problem.
!                 Base object is dead, while nested/derived object is still alive or processed.
!                 Please check lifetime of UMat/Mat objects!
2017-06-21 14:33:09 +03:00

331 lines
11 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
using namespace std;
using namespace cv;
const string FEATURES2D_DIR = "features2d";
const string IMAGE_FILENAME = "tsukuba.png";
const string DETECTOR_DIR = FEATURES2D_DIR + "/feature_detectors";
/****************************************************************************************\
* Regression tests for feature detectors comparing keypoints. *
\****************************************************************************************/
class CV_FeatureDetectorTest : public cvtest::BaseTest
{
public:
CV_FeatureDetectorTest( const string& _name, const Ptr<FeatureDetector>& _fdetector ) :
name(_name), fdetector(_fdetector) {}
protected:
bool isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 );
void compareKeypointSets( const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints );
void emptyDataTest();
void regressionTest(); // TODO test of detect() with mask
virtual void run( int );
string name;
Ptr<FeatureDetector> fdetector;
};
void CV_FeatureDetectorTest::emptyDataTest()
{
// One image.
Mat image;
vector<KeyPoint> keypoints;
try
{
fdetector->detect( image, keypoints );
}
catch(...)
{
ts->printf( cvtest::TS::LOG, "detect() on empty image must not generate exception (1).\n" );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
}
if( !keypoints.empty() )
{
ts->printf( cvtest::TS::LOG, "detect() on empty image must return empty keypoints vector (1).\n" );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
return;
}
// Several images.
vector<Mat> images;
vector<vector<KeyPoint> > keypointCollection;
try
{
fdetector->detect( images, keypointCollection );
}
catch(...)
{
ts->printf( cvtest::TS::LOG, "detect() on empty image vector must not generate exception (2).\n" );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
}
}
bool CV_FeatureDetectorTest::isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 )
{
const float maxPtDif = 1.f;
const float maxSizeDif = 1.f;
const float maxAngleDif = 2.f;
const float maxResponseDif = 0.1f;
float dist = (float)norm( p1.pt - p2.pt );
return (dist < maxPtDif &&
fabs(p1.size - p2.size) < maxSizeDif &&
abs(p1.angle - p2.angle) < maxAngleDif &&
abs(p1.response - p2.response) < maxResponseDif &&
p1.octave == p2.octave &&
p1.class_id == p2.class_id );
}
void CV_FeatureDetectorTest::compareKeypointSets( const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints )
{
const float maxCountRatioDif = 0.01f;
// Compare counts of validation and calculated keypoints.
float countRatio = (float)validKeypoints.size() / (float)calcKeypoints.size();
if( countRatio < 1 - maxCountRatioDif || countRatio > 1.f + maxCountRatioDif )
{
ts->printf( cvtest::TS::LOG, "Bad keypoints count ratio (validCount = %d, calcCount = %d).\n",
validKeypoints.size(), calcKeypoints.size() );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
return;
}
int progress = 0, progressCount = (int)(validKeypoints.size() * calcKeypoints.size());
int badPointCount = 0, commonPointCount = max((int)validKeypoints.size(), (int)calcKeypoints.size());
for( size_t v = 0; v < validKeypoints.size(); v++ )
{
int nearestIdx = -1;
float minDist = std::numeric_limits<float>::max();
for( size_t c = 0; c < calcKeypoints.size(); c++ )
{
progress = update_progress( progress, (int)(v*calcKeypoints.size() + c), progressCount, 0 );
float curDist = (float)norm( calcKeypoints[c].pt - validKeypoints[v].pt );
if( curDist < minDist )
{
minDist = curDist;
nearestIdx = (int)c;
}
}
assert( minDist >= 0 );
if( !isSimilarKeypoints( validKeypoints[v], calcKeypoints[nearestIdx] ) )
badPointCount++;
}
ts->printf( cvtest::TS::LOG, "badPointCount = %d; validPointCount = %d; calcPointCount = %d\n",
badPointCount, validKeypoints.size(), calcKeypoints.size() );
if( badPointCount > 0.9 * commonPointCount )
{
ts->printf( cvtest::TS::LOG, " - Bad accuracy!\n" );
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
return;
}
ts->printf( cvtest::TS::LOG, " - OK\n" );
}
void CV_FeatureDetectorTest::regressionTest()
{
assert( !fdetector.empty() );
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
string resFilename = string(ts->get_data_path()) + DETECTOR_DIR + "/" + string(name) + ".xml.gz";
// Read the test image.
Mat image = imread( imgFilename );
if( image.empty() )
{
ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
return;
}
FileStorage fs( resFilename, FileStorage::READ );
// Compute keypoints.
vector<KeyPoint> calcKeypoints;
fdetector->detect( image, calcKeypoints );
if( fs.isOpened() ) // Compare computed and valid keypoints.
{
// TODO compare saved feature detector params with current ones
// Read validation keypoints set.
vector<KeyPoint> validKeypoints;
read( fs["keypoints"], validKeypoints );
if( validKeypoints.empty() )
{
ts->printf( cvtest::TS::LOG, "Keypoints can not be read.\n" );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
return;
}
compareKeypointSets( validKeypoints, calcKeypoints );
}
else // Write detector parameters and computed keypoints as validation data.
{
fs.open( resFilename, FileStorage::WRITE );
if( !fs.isOpened() )
{
ts->printf( cvtest::TS::LOG, "File %s can not be opened to write.\n", resFilename.c_str() );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
return;
}
else
{
fs << "detector_params" << "{";
fdetector->write( fs );
fs << "}";
write( fs, "keypoints", calcKeypoints );
}
}
}
void CV_FeatureDetectorTest::run( int /*start_from*/ )
{
if( !fdetector )
{
ts->printf( cvtest::TS::LOG, "Feature detector is empty.\n" );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
return;
}
emptyDataTest();
regressionTest();
ts->set_failed_test_info( cvtest::TS::OK );
}
/****************************************************************************************\
* Tests registrations *
\****************************************************************************************/
TEST( Features2d_Detector_BRISK, regression )
{
CV_FeatureDetectorTest test( "detector-brisk", BRISK::create() );
test.safe_run();
}
TEST( Features2d_Detector_FAST, regression )
{
CV_FeatureDetectorTest test( "detector-fast", FastFeatureDetector::create() );
test.safe_run();
}
TEST( Features2d_Detector_AGAST, regression )
{
CV_FeatureDetectorTest test( "detector-agast", AgastFeatureDetector::create() );
test.safe_run();
}
TEST( Features2d_Detector_GFTT, regression )
{
CV_FeatureDetectorTest test( "detector-gftt", GFTTDetector::create() );
test.safe_run();
}
TEST( Features2d_Detector_Harris, regression )
{
Ptr<GFTTDetector> gftt = GFTTDetector::create();
gftt->setHarrisDetector(true);
CV_FeatureDetectorTest test( "detector-harris", gftt);
test.safe_run();
}
TEST( Features2d_Detector_MSER, DISABLED_regression )
{
CV_FeatureDetectorTest test( "detector-mser", MSER::create() );
test.safe_run();
}
TEST( Features2d_Detector_ORB, regression )
{
CV_FeatureDetectorTest test( "detector-orb", ORB::create() );
test.safe_run();
}
TEST( Features2d_Detector_KAZE, regression )
{
CV_FeatureDetectorTest test( "detector-kaze", KAZE::create() );
test.safe_run();
}
TEST( Features2d_Detector_AKAZE, regression )
{
CV_FeatureDetectorTest test( "detector-akaze", AKAZE::create() );
test.safe_run();
}
TEST( Features2d_Detector_AKAZE_DESCRIPTOR_KAZE, regression )
{
CV_FeatureDetectorTest test( "detector-akaze-with-kaze-desc", AKAZE::create(AKAZE::DESCRIPTOR_KAZE) );
test.safe_run();
}
TEST( Features2d_Detector_AKAZE, detect_and_compute_split )
{
Mat testImg(100, 100, CV_8U);
RNG rng(101);
rng.fill(testImg, RNG::UNIFORM, Scalar(0), Scalar(255), true);
Ptr<Feature2D> ext = AKAZE::create(AKAZE::DESCRIPTOR_MLDB, 0, 3, 0.001f, 1, 1, KAZE::DIFF_PM_G2);
vector<KeyPoint> detAndCompKps;
Mat desc;
ext->detectAndCompute(testImg, noArray(), detAndCompKps, desc);
vector<KeyPoint> detKps;
ext->detect(testImg, detKps);
ASSERT_EQ(detKps.size(), detAndCompKps.size());
for(size_t i = 0; i < detKps.size(); i++)
ASSERT_EQ(detKps[i].hash(), detAndCompKps[i].hash());
}