mirror of
https://github.com/opencv/opencv.git
synced 2025-01-13 16:44:05 +08:00
280 lines
11 KiB
C++
280 lines
11 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
|
|
|
|
cv::gpu::MOG_GPU::MOG_GPU(int) { throw_nogpu(); }
|
|
void cv::gpu::MOG_GPU::initialize(cv::Size, int) { throw_nogpu(); }
|
|
void cv::gpu::MOG_GPU::operator()(const cv::gpu::GpuMat&, cv::gpu::GpuMat&, float, Stream&) { throw_nogpu(); }
|
|
void cv::gpu::MOG_GPU::getBackgroundImage(GpuMat&, Stream&) const { throw_nogpu(); }
|
|
void cv::gpu::MOG_GPU::release() {}
|
|
|
|
cv::gpu::MOG2_GPU::MOG2_GPU(int) { throw_nogpu(); }
|
|
void cv::gpu::MOG2_GPU::initialize(cv::Size, int) { throw_nogpu(); }
|
|
void cv::gpu::MOG2_GPU::operator()(const GpuMat&, GpuMat&, float, Stream&) { throw_nogpu(); }
|
|
void cv::gpu::MOG2_GPU::getBackgroundImage(GpuMat&, Stream&) const { throw_nogpu(); }
|
|
void cv::gpu::MOG2_GPU::release() {}
|
|
|
|
#else
|
|
|
|
namespace cv { namespace gpu { namespace device
|
|
{
|
|
namespace mog
|
|
{
|
|
void mog_gpu(PtrStepSzb frame, int cn, PtrStepSzb fgmask, PtrStepSzf weight, PtrStepSzf sortKey, PtrStepSzb mean, PtrStepSzb var,
|
|
int nmixtures, float varThreshold, float learningRate, float backgroundRatio, float noiseSigma,
|
|
cudaStream_t stream);
|
|
void getBackgroundImage_gpu(int cn, PtrStepSzf weight, PtrStepSzb mean, PtrStepSzb dst, int nmixtures, float backgroundRatio, cudaStream_t stream);
|
|
|
|
void loadConstants(int nmixtures, float Tb, float TB, float Tg, float varInit, float varMin, float varMax, float tau, unsigned char shadowVal);
|
|
void mog2_gpu(PtrStepSzb frame, int cn, PtrStepSzb fgmask, PtrStepSzb modesUsed, PtrStepSzf weight, PtrStepSzf variance, PtrStepSzb mean, float alphaT, float prune, bool detectShadows, cudaStream_t stream);
|
|
void getBackgroundImage2_gpu(int cn, PtrStepSzb modesUsed, PtrStepSzf weight, PtrStepSzb mean, PtrStepSzb dst, cudaStream_t stream);
|
|
}
|
|
}}}
|
|
|
|
namespace mog
|
|
{
|
|
const int defaultNMixtures = 5;
|
|
const int defaultHistory = 200;
|
|
const float defaultBackgroundRatio = 0.7f;
|
|
const float defaultVarThreshold = 2.5f * 2.5f;
|
|
const float defaultNoiseSigma = 30.0f * 0.5f;
|
|
const float defaultInitialWeight = 0.05f;
|
|
}
|
|
|
|
cv::gpu::MOG_GPU::MOG_GPU(int nmixtures) :
|
|
frameSize_(0, 0), frameType_(0), nframes_(0)
|
|
{
|
|
nmixtures_ = std::min(nmixtures > 0 ? nmixtures : mog::defaultNMixtures, 8);
|
|
history = mog::defaultHistory;
|
|
varThreshold = mog::defaultVarThreshold;
|
|
backgroundRatio = mog::defaultBackgroundRatio;
|
|
noiseSigma = mog::defaultNoiseSigma;
|
|
}
|
|
|
|
void cv::gpu::MOG_GPU::initialize(cv::Size frameSize, int frameType)
|
|
{
|
|
CV_Assert(frameType == CV_8UC1 || frameType == CV_8UC3 || frameType == CV_8UC4);
|
|
|
|
frameSize_ = frameSize;
|
|
frameType_ = frameType;
|
|
|
|
int ch = CV_MAT_CN(frameType);
|
|
int work_ch = ch;
|
|
|
|
// for each gaussian mixture of each pixel bg model we store
|
|
// the mixture sort key (w/sum_of_variances), the mixture weight (w),
|
|
// the mean (nchannels values) and
|
|
// the diagonal covariance matrix (another nchannels values)
|
|
|
|
weight_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1);
|
|
sortKey_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1);
|
|
mean_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC(work_ch));
|
|
var_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC(work_ch));
|
|
|
|
weight_.setTo(cv::Scalar::all(0));
|
|
sortKey_.setTo(cv::Scalar::all(0));
|
|
mean_.setTo(cv::Scalar::all(0));
|
|
var_.setTo(cv::Scalar::all(0));
|
|
|
|
nframes_ = 0;
|
|
}
|
|
|
|
void cv::gpu::MOG_GPU::operator()(const cv::gpu::GpuMat& frame, cv::gpu::GpuMat& fgmask, float learningRate, Stream& stream)
|
|
{
|
|
using namespace cv::gpu::device::mog;
|
|
|
|
CV_Assert(frame.depth() == CV_8U);
|
|
|
|
int ch = frame.channels();
|
|
int work_ch = ch;
|
|
|
|
if (nframes_ == 0 || learningRate >= 1.0 || frame.size() != frameSize_ || work_ch != mean_.channels())
|
|
initialize(frame.size(), frame.type());
|
|
|
|
fgmask.create(frameSize_, CV_8UC1);
|
|
|
|
++nframes_;
|
|
learningRate = learningRate >= 0.0f && nframes_ > 1 ? learningRate : 1.0f / std::min(nframes_, history);
|
|
CV_Assert(learningRate >= 0.0f);
|
|
|
|
mog_gpu(frame, ch, fgmask, weight_, sortKey_, mean_, var_, nmixtures_,
|
|
varThreshold, learningRate, backgroundRatio, noiseSigma,
|
|
StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void cv::gpu::MOG_GPU::getBackgroundImage(GpuMat& backgroundImage, Stream& stream) const
|
|
{
|
|
using namespace cv::gpu::device::mog;
|
|
|
|
backgroundImage.create(frameSize_, frameType_);
|
|
|
|
getBackgroundImage_gpu(backgroundImage.channels(), weight_, mean_, backgroundImage, nmixtures_, backgroundRatio, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void cv::gpu::MOG_GPU::release()
|
|
{
|
|
frameSize_ = Size(0, 0);
|
|
frameType_ = 0;
|
|
nframes_ = 0;
|
|
|
|
weight_.release();
|
|
sortKey_.release();
|
|
mean_.release();
|
|
var_.release();
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////
|
|
// MOG2
|
|
|
|
namespace mog2
|
|
{
|
|
// default parameters of gaussian background detection algorithm
|
|
const int defaultHistory = 500; // Learning rate; alpha = 1/defaultHistory2
|
|
const float defaultVarThreshold = 4.0f * 4.0f;
|
|
const int defaultNMixtures = 5; // maximal number of Gaussians in mixture
|
|
const float defaultBackgroundRatio = 0.9f; // threshold sum of weights for background test
|
|
const float defaultVarThresholdGen = 3.0f * 3.0f;
|
|
const float defaultVarInit = 15.0f; // initial variance for new components
|
|
const float defaultVarMax = 5.0f * defaultVarInit;
|
|
const float defaultVarMin = 4.0f;
|
|
|
|
// additional parameters
|
|
const float defaultfCT = 0.05f; // complexity reduction prior constant 0 - no reduction of number of components
|
|
const unsigned char defaultnShadowDetection = 127; // value to use in the segmentation mask for shadows, set 0 not to do shadow detection
|
|
const float defaultfTau = 0.5f; // Tau - shadow threshold, see the paper for explanation
|
|
}
|
|
|
|
cv::gpu::MOG2_GPU::MOG2_GPU(int nmixtures) :
|
|
frameSize_(0, 0), frameType_(0), nframes_(0)
|
|
{
|
|
nmixtures_ = nmixtures > 0 ? nmixtures : mog2::defaultNMixtures;
|
|
|
|
history = mog2::defaultHistory;
|
|
varThreshold = mog2::defaultVarThreshold;
|
|
bShadowDetection = true;
|
|
|
|
backgroundRatio = mog2::defaultBackgroundRatio;
|
|
fVarInit = mog2::defaultVarInit;
|
|
fVarMax = mog2::defaultVarMax;
|
|
fVarMin = mog2::defaultVarMin;
|
|
|
|
varThresholdGen = mog2::defaultVarThresholdGen;
|
|
fCT = mog2::defaultfCT;
|
|
nShadowDetection = mog2::defaultnShadowDetection;
|
|
fTau = mog2::defaultfTau;
|
|
}
|
|
|
|
void cv::gpu::MOG2_GPU::initialize(cv::Size frameSize, int frameType)
|
|
{
|
|
using namespace cv::gpu::device::mog;
|
|
|
|
CV_Assert(frameType == CV_8UC1 || frameType == CV_8UC3 || frameType == CV_8UC4);
|
|
|
|
frameSize_ = frameSize;
|
|
frameType_ = frameType;
|
|
nframes_ = 0;
|
|
|
|
int ch = CV_MAT_CN(frameType);
|
|
int work_ch = ch;
|
|
|
|
// for each gaussian mixture of each pixel bg model we store ...
|
|
// the mixture weight (w),
|
|
// the mean (nchannels values) and
|
|
// the covariance
|
|
weight_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1);
|
|
variance_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1);
|
|
mean_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC(work_ch));
|
|
|
|
//make the array for keeping track of the used modes per pixel - all zeros at start
|
|
bgmodelUsedModes_.create(frameSize_, CV_8UC1);
|
|
bgmodelUsedModes_.setTo(cv::Scalar::all(0));
|
|
|
|
loadConstants(nmixtures_, varThreshold, backgroundRatio, varThresholdGen, fVarInit, fVarMin, fVarMax, fTau, nShadowDetection);
|
|
}
|
|
|
|
void cv::gpu::MOG2_GPU::operator()(const GpuMat& frame, GpuMat& fgmask, float learningRate, Stream& stream)
|
|
{
|
|
using namespace cv::gpu::device::mog;
|
|
|
|
int ch = frame.channels();
|
|
int work_ch = ch;
|
|
|
|
if (nframes_ == 0 || learningRate >= 1.0f || frame.size() != frameSize_ || work_ch != mean_.channels())
|
|
initialize(frame.size(), frame.type());
|
|
|
|
fgmask.create(frameSize_, CV_8UC1);
|
|
fgmask.setTo(cv::Scalar::all(0));
|
|
|
|
++nframes_;
|
|
learningRate = learningRate >= 0.0f && nframes_ > 1 ? learningRate : 1.0f / std::min(2 * nframes_, history);
|
|
CV_Assert(learningRate >= 0.0f);
|
|
|
|
mog2_gpu(frame, frame.channels(), fgmask, bgmodelUsedModes_, weight_, variance_, mean_, learningRate, -learningRate * fCT, bShadowDetection, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void cv::gpu::MOG2_GPU::getBackgroundImage(GpuMat& backgroundImage, Stream& stream) const
|
|
{
|
|
using namespace cv::gpu::device::mog;
|
|
|
|
backgroundImage.create(frameSize_, frameType_);
|
|
|
|
getBackgroundImage2_gpu(backgroundImage.channels(), bgmodelUsedModes_, weight_, mean_, backgroundImage, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void cv::gpu::MOG2_GPU::release()
|
|
{
|
|
frameSize_ = Size(0, 0);
|
|
frameType_ = 0;
|
|
nframes_ = 0;
|
|
|
|
weight_.release();
|
|
variance_.release();
|
|
mean_.release();
|
|
|
|
bgmodelUsedModes_.release();
|
|
}
|
|
|
|
#endif
|