mirror of
https://github.com/opencv/opencv.git
synced 2024-12-17 19:08:01 +08:00
d981d04c76
cuda4dnn: optimizations for swish, mish, sigmoid, region, resize based ops, transpose, identity-conv fusion * bunch of optimizations * more accurate implementation for mish
182 lines
9.0 KiB
Plaintext
182 lines
9.0 KiB
Plaintext
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#include <cuda_runtime.h>
|
|
#include <cuda_fp16.h>
|
|
|
|
#include "math.hpp"
|
|
#include "limits.hpp"
|
|
#include "types.hpp"
|
|
#include "grid_stride_range.hpp"
|
|
#include "execution.hpp"
|
|
#include "memory.hpp"
|
|
|
|
#include "../cuda4dnn/csl/stream.hpp"
|
|
#include "../cuda4dnn/csl/tensor.hpp"
|
|
#include "../cuda4dnn/csl/span.hpp"
|
|
|
|
#include <opencv2/core.hpp>
|
|
|
|
using namespace cv::dnn::cuda4dnn::csl;
|
|
using namespace cv::dnn::cuda4dnn::csl::device;
|
|
|
|
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
|
|
|
|
namespace raw {
|
|
|
|
template <class T, std::size_t CHANNELS_PER_ITER>
|
|
__global__ void roi_pooling(
|
|
Span<T> output, size_type pooled_height, size_type pooled_width,
|
|
View<T> input, size_type in_height, size_type in_width,
|
|
View<T> rois, size_type num_channels, float spatial_scale)
|
|
{
|
|
// input: [1, num_channels, in_height, in_width]
|
|
const auto in_image_size = in_height * in_width;
|
|
|
|
// rois: [num_rois, 5]
|
|
auto num_rois = rois.size() / 5;
|
|
|
|
// output: [num_rois, num_channels, pooled_height, pooled_width]
|
|
const auto out_spatial_size = pooled_height * pooled_width;
|
|
const auto out_roi_size = num_channels * out_spatial_size;
|
|
|
|
/* we have to compute the output value for every combination of (roi, c, y, x) in the output
|
|
*
|
|
* the computation involving (y, x) are identical for all non-spatial dimensions
|
|
* the computation and memory requests involving the roi are identical for remaining three axes
|
|
*
|
|
* we process multiple channels every iteration to reuse the identical computation
|
|
* and memory requests involved with the roi and spatial dimensions
|
|
*/
|
|
/*
|
|
* if we are processing `CHANNELS_PER_ITER` channels per iteration, we will need
|
|
* (num_channels / CHANNELS_PER_ITER) iterations per (roi, x, y)
|
|
*/
|
|
auto num_channel_iters_per_roi_xy = num_channels / CHANNELS_PER_ITER;
|
|
|
|
/* we need `num_channel_iters_per_roi_xy` iterations per (roi, x, y) and there are
|
|
* `num_rois` rois and `out_spatial_size` combinations of (x, y)
|
|
*/
|
|
auto iters_per_roi = num_channel_iters_per_roi_xy * out_spatial_size;
|
|
auto iters_required = num_rois * iters_per_roi;
|
|
|
|
for (auto iter : grid_stride_range(iters_required))
|
|
{
|
|
const index_type roi_no = iter / iters_per_roi;
|
|
const index_type c_start = ((iter % iters_per_roi) / out_spatial_size) * CHANNELS_PER_ITER;
|
|
|
|
/* note here that consecutive `iter` values will often have consecutive `x` values
|
|
* => stores into output will be coalesced across threads
|
|
*/
|
|
const index_type y = (iter % out_spatial_size) / pooled_width;
|
|
const index_type x = iter % pooled_width;
|
|
|
|
const index_type roi_offset = roi_no * 5;
|
|
|
|
using device::round;
|
|
const index_type batch_id = rois[roi_offset + 0];
|
|
const index_type x_start_roi = round(static_cast<float>(rois[roi_offset + 1]) * spatial_scale);
|
|
const index_type y_start_roi = round(static_cast<float>(rois[roi_offset + 2]) * spatial_scale);
|
|
const index_type x_end_roi = round(static_cast<float>(rois[roi_offset + 3]) * spatial_scale);
|
|
const index_type y_end_roi = round(static_cast<float>(rois[roi_offset + 4]) * spatial_scale);
|
|
|
|
using device::max;
|
|
const auto roi_width = max<index_type>(x_end_roi - x_start_roi + 1, 1);
|
|
const auto roi_height = max<index_type>(y_end_roi - y_start_roi + 1, 1);
|
|
|
|
const auto roi_width_ratio = static_cast<float>(roi_width) / pooled_width;
|
|
const auto roi_height_ratio = static_cast<float>(roi_height) / pooled_height;
|
|
|
|
auto x_start = x_start_roi + static_cast<index_type>(x * roi_width_ratio);
|
|
auto y_start = y_start_roi + static_cast<index_type>(y * roi_height_ratio);
|
|
|
|
using device::ceil;
|
|
auto x_end = x_start_roi + static_cast<index_type>(ceil((x + 1) * roi_width_ratio));
|
|
auto y_end = y_start_roi + static_cast<index_type>(ceil((y + 1) * roi_height_ratio));
|
|
|
|
using device::max;
|
|
x_start = max<index_type>(x_start, 0);
|
|
y_start = max<index_type>(y_start, 0);
|
|
|
|
using device::min;
|
|
x_end = min<index_type>(x_end, in_width);
|
|
y_end = min<index_type>(y_end, in_height);
|
|
|
|
index_type in_offset = (batch_id * num_channels + c_start) * in_height * in_width;
|
|
index_type out_idx = roi_no * out_roi_size + c_start * out_spatial_size + y * pooled_width + x;
|
|
|
|
for (int i = 0; i < CHANNELS_PER_ITER; i++)
|
|
{
|
|
/* We have to set the output to zero if (x_start >= x_end) or (y_start >= y_end). If either
|
|
* condition is true, the loops below won't execute even a single iteration. Hence, by setting
|
|
* `max_val` to zero in this case, we can combine it with the `else` code.
|
|
*/
|
|
T max_val = (x_start >= x_end || y_start >= y_end) ? T(0) : device::numeric_limits<T>::lowest();
|
|
|
|
for (auto iy = y_start; iy < y_end; iy++)
|
|
{
|
|
const auto in_idx = in_offset + iy * in_width;
|
|
for (auto ix = x_start; ix < x_end; ix++)
|
|
{
|
|
max_val = max(max_val, load_ldg(input[in_idx + ix]));
|
|
}
|
|
}
|
|
|
|
output[out_idx] = max_val;
|
|
|
|
in_offset += in_image_size;
|
|
out_idx += out_spatial_size;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class T, std::size_t CHANNELS_PER_ITER> static
|
|
void launch_multichannel_roi_pooling(const Stream& stream,
|
|
Span<T> output, size_type pooled_height, size_type pooled_width,
|
|
View<T> input, size_type in_height, size_type in_width,
|
|
View<T> rois, size_type num_channels, float spatial_scale)
|
|
{
|
|
auto kernel = raw::roi_pooling<T, CHANNELS_PER_ITER>;
|
|
auto policy = make_policy(kernel, output.size() / CHANNELS_PER_ITER, 0, stream);
|
|
launch_kernel(kernel, policy, output, pooled_height, pooled_width, input, in_height, in_width, rois, num_channels, spatial_scale);
|
|
}
|
|
|
|
template <class T>
|
|
void roi_pooling(const Stream& stream, TensorSpan<T> output, TensorView<T> input, View<T> rois, float spatial_scale)
|
|
{
|
|
CV_Assert(input.get_axis_size(1) == output.get_axis_size(1));
|
|
|
|
size_type num_channels = output.get_axis_size(1);
|
|
|
|
size_type pooled_height = output.get_axis_size(2);
|
|
size_type pooled_width = output.get_axis_size(3);
|
|
|
|
size_type in_height = input.get_axis_size(2);
|
|
size_type in_width = input.get_axis_size(3);
|
|
|
|
if (num_channels % 64 == 0) {
|
|
launch_multichannel_roi_pooling<T, 64>(stream, output, pooled_height, pooled_width, input, in_height, in_width, rois, num_channels, spatial_scale);
|
|
} else if (num_channels % 32 == 0) {
|
|
launch_multichannel_roi_pooling<T, 32>(stream, output, pooled_height, pooled_width, input, in_height, in_width, rois, num_channels, spatial_scale);
|
|
} else if (num_channels % 16 == 0) {
|
|
launch_multichannel_roi_pooling<T, 16>(stream, output, pooled_height, pooled_width, input, in_height, in_width, rois, num_channels, spatial_scale);
|
|
} else if (num_channels % 8 == 0) {
|
|
launch_multichannel_roi_pooling<T, 8>(stream, output, pooled_height, pooled_width, input, in_height, in_width, rois, num_channels, spatial_scale);
|
|
} else if (num_channels % 4 == 0) {
|
|
launch_multichannel_roi_pooling<T, 4>(stream, output, pooled_height, pooled_width, input, in_height, in_width, rois, num_channels, spatial_scale);
|
|
} else if (num_channels % 2 == 0) {
|
|
launch_multichannel_roi_pooling<T, 2>(stream, output, pooled_height, pooled_width, input, in_height, in_width, rois, num_channels, spatial_scale);
|
|
} else {
|
|
launch_multichannel_roi_pooling<T, 1>(stream, output, pooled_height, pooled_width, input, in_height, in_width, rois, num_channels, spatial_scale);
|
|
}
|
|
}
|
|
|
|
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
|
|
template void roi_pooling(const Stream& stream, TensorSpan<__half> output, TensorView<__half> input, View<__half> rois, float spatial_scale);
|
|
#endif
|
|
template void roi_pooling(const Stream& stream, TensorSpan<float> output, TensorView<float> input, View<float> rois, float spatial_scale);
|
|
|
|
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
|