mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
a80af177b6
base commit:19926e2979
original dnn.cpp content:19926e2979/modules/dnn/src/dnn.cpp
340 lines
10 KiB
C++
340 lines
10 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#ifndef __OPENCV_DNN_SRC_LEGACY_BACKEND_HPP__
|
|
#define __OPENCV_DNN_SRC_LEGACY_BACKEND_HPP__
|
|
|
|
#include "layer_internals.hpp" // LayerPin LayerData DataLayer
|
|
|
|
namespace cv { namespace dnn {
|
|
CV__DNN_INLINE_NS_BEGIN
|
|
inline namespace detail {
|
|
|
|
|
|
#ifdef HAVE_OPENCL
|
|
class OpenCLBackendWrapper : public BackendWrapper
|
|
{
|
|
public:
|
|
OpenCLBackendWrapper(Mat& m)
|
|
: BackendWrapper(DNN_BACKEND_OPENCV, DNN_TARGET_OPENCL)
|
|
{
|
|
m.copyTo(umat);
|
|
host = &m;
|
|
hostDirty = false;
|
|
}
|
|
|
|
OpenCLBackendWrapper(const Ptr<BackendWrapper>& baseBuffer, Mat& m)
|
|
: BackendWrapper(DNN_BACKEND_OPENCV, DNN_TARGET_OPENCL)
|
|
{
|
|
Ptr<OpenCLBackendWrapper> base = baseBuffer.dynamicCast<OpenCLBackendWrapper>();
|
|
CV_Assert(!base.empty());
|
|
|
|
host = &m;
|
|
|
|
int shape[] = { 1, (int)base->umat.total() };
|
|
umat = base->umat.reshape(1, 2, &shape[0])
|
|
.colRange(0, host->total())
|
|
.reshape(1, host->dims, &host->size[0]);
|
|
hostDirty = false;
|
|
}
|
|
|
|
static Ptr<BackendWrapper> create(Mat& m)
|
|
{
|
|
return Ptr<BackendWrapper>(new OpenCLBackendWrapper(m));
|
|
}
|
|
|
|
static Ptr<BackendWrapper> create(const Ptr<BackendWrapper>& baseBuffer, Mat& m)
|
|
{
|
|
return Ptr<BackendWrapper>(new OpenCLBackendWrapper(baseBuffer, m));
|
|
}
|
|
|
|
static std::vector<UMat> getUMatVector(const std::vector<Ptr<BackendWrapper>>& wrappers)
|
|
{
|
|
const int numWrappers = wrappers.size();
|
|
std::vector<UMat> mats(wrappers.size());
|
|
for (int i = 0; i < numWrappers; ++i)
|
|
{
|
|
Ptr<OpenCLBackendWrapper> umatWrapper = wrappers[i].dynamicCast<OpenCLBackendWrapper>();
|
|
CV_Assert(!umatWrapper.empty());
|
|
umatWrapper->copyToDevice();
|
|
mats[i] = umatWrapper->umat;
|
|
}
|
|
return mats;
|
|
}
|
|
|
|
// Replaces all umats in wrappers to specific ones.
|
|
static void update(const std::vector<Ptr<BackendWrapper>>& wrappers,
|
|
const std::vector<UMat>& umats)
|
|
{
|
|
CV_Assert(wrappers.size() == umats.size());
|
|
for (int i = 0, n = umats.size(); i < n; ++i)
|
|
{
|
|
Ptr<OpenCLBackendWrapper> umatWrapper = wrappers[i].dynamicCast<OpenCLBackendWrapper>();
|
|
CV_Assert(!umatWrapper.empty());
|
|
umatWrapper->umat = umats[i];
|
|
}
|
|
}
|
|
|
|
~OpenCLBackendWrapper() {}
|
|
|
|
// Copies data from device to a host memory.
|
|
virtual void copyToHost() CV_OVERRIDE
|
|
{
|
|
umat.copyTo(*host);
|
|
}
|
|
|
|
virtual void setHostDirty() CV_OVERRIDE
|
|
{
|
|
hostDirty = true;
|
|
};
|
|
|
|
void copyToDevice()
|
|
{
|
|
if (hostDirty)
|
|
{
|
|
host->copyTo(umat);
|
|
hostDirty = false;
|
|
}
|
|
}
|
|
|
|
private:
|
|
UMat umat;
|
|
Mat* host;
|
|
bool hostDirty;
|
|
}; // OpenCLBackendWrapper
|
|
#endif // HAVE_OPENCL
|
|
|
|
|
|
struct BlobManager
|
|
{
|
|
public:
|
|
// Increase references counter to layer output.
|
|
void addReference(const LayerPin& lp)
|
|
{
|
|
std::map<LayerPin, int>::iterator it = refCounter.find(lp);
|
|
if (it == refCounter.end())
|
|
refCounter[lp] = 1;
|
|
else
|
|
it->second += 1;
|
|
}
|
|
|
|
void addReferences(const std::vector<LayerPin>& pins)
|
|
{
|
|
for (int i = 0; i < pins.size(); i++)
|
|
{
|
|
addReference(pins[i]);
|
|
}
|
|
}
|
|
|
|
// Returns number of references to allocated memory that used in specific
|
|
// layer blob.
|
|
int numReferences(const LayerPin& lp)
|
|
{
|
|
std::map<LayerPin, LayerPin>::const_iterator mapIt = reuseMap.find(lp);
|
|
CV_Assert(mapIt != reuseMap.end());
|
|
LayerPin memHost = mapIt->second;
|
|
|
|
std::map<LayerPin, int>::const_iterator refIt = refCounter.find(memHost);
|
|
CV_Assert(refIt != refCounter.end());
|
|
return refIt->second;
|
|
}
|
|
|
|
// Reuse data allocated in <host> inside the <user> blob.
|
|
void reuse(const LayerPin& host, const LayerPin& user)
|
|
{
|
|
CV_Assert(reuseMap.find(user) == reuseMap.end());
|
|
CV_Assert(reuseMap.find(host) != reuseMap.end());
|
|
LayerPin memHost = reuseMap[host];
|
|
reuseMap[user] = memHost;
|
|
if (refCounter.find(memHost) != refCounter.end())
|
|
{
|
|
std::map<LayerPin, int>::iterator userRefIt = refCounter.find(user);
|
|
if (userRefIt != refCounter.end())
|
|
{
|
|
refCounter[memHost] += userRefIt->second;
|
|
refCounter.erase(userRefIt);
|
|
}
|
|
else
|
|
refCounter[memHost] += 1;
|
|
}
|
|
}
|
|
|
|
// Decrease references counter to allocated memory inside specific blob.
|
|
void releaseReference(const LayerPin& lp)
|
|
{
|
|
std::map<LayerPin, LayerPin>::const_iterator mapIt = reuseMap.find(lp);
|
|
CV_Assert(mapIt != reuseMap.end());
|
|
|
|
std::map<LayerPin, int>::iterator refIt = refCounter.find(mapIt->second);
|
|
CV_Assert(refIt != refCounter.end());
|
|
CV_Assert(refIt->second > 0);
|
|
refIt->second -= 1;
|
|
}
|
|
|
|
void releaseReferences(const std::vector<LayerPin>& pins)
|
|
{
|
|
for (int i = 0; i < pins.size(); i++)
|
|
{
|
|
releaseReference(pins[i]);
|
|
}
|
|
}
|
|
|
|
void reuseOrCreate(const MatShape& shape, const LayerPin& lp, Mat& dst, const int& dtype)
|
|
{
|
|
if (!getParam_DNN_DISABLE_MEMORY_OPTIMIZATIONS())
|
|
{
|
|
Mat bestBlob;
|
|
LayerPin bestBlobPin;
|
|
|
|
std::map<LayerPin, Mat>::const_iterator hostIt;
|
|
std::map<LayerPin, int>::const_iterator refIt;
|
|
|
|
const int targetTotal = total(shape);
|
|
int bestBlobTotal = INT_MAX;
|
|
|
|
for (hostIt = memHosts.begin(); hostIt != memHosts.end(); ++hostIt)
|
|
{
|
|
refIt = refCounter.find(hostIt->first);
|
|
// Use only blobs that had references before because if not,
|
|
// it might be used as output.
|
|
if (refIt != refCounter.end() && refIt->second == 0)
|
|
{
|
|
const Mat& unusedBlob = hostIt->second;
|
|
if (unusedBlob.total() >= targetTotal && unusedBlob.total() < bestBlobTotal && unusedBlob.type() == dtype)
|
|
{
|
|
bestBlobPin = hostIt->first;
|
|
bestBlob = unusedBlob;
|
|
bestBlobTotal = unusedBlob.total();
|
|
}
|
|
}
|
|
}
|
|
if (!bestBlob.empty())
|
|
{
|
|
reuse(bestBlobPin, lp);
|
|
dst = bestBlob.reshape(1, 1).colRange(0, targetTotal).reshape(1, shape);
|
|
return;
|
|
}
|
|
}
|
|
|
|
{
|
|
// if dst already has been allocated with total(shape) elements,
|
|
// it won't be recreated and pointer of dst.data remains the same.
|
|
dst.create(shape, dtype);
|
|
addHost(lp, dst);
|
|
}
|
|
}
|
|
|
|
void allocateBlobsForLayer(LayerData& ld, const LayerShapes& layerShapes,
|
|
std::vector<LayerPin>& pinsForInternalBlobs)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
|
|
pinsForInternalBlobs.clear();
|
|
|
|
std::vector<Mat>&outputBlobs = ld.outputBlobs,
|
|
&internalBlobs = ld.internals;
|
|
|
|
const ShapesVec &outShapes = layerShapes.out,
|
|
internalShapes = layerShapes.internal;
|
|
|
|
outputBlobs.resize(std::max((size_t)1, outShapes.size())); // layer produce at least one output blob
|
|
internalBlobs.resize(internalShapes.size());
|
|
|
|
CV_Assert(ld.requiredOutputs.size() <= outShapes.size());
|
|
|
|
// Check that layer could work in-place.
|
|
bool inPlace = false;
|
|
if (layerShapes.supportInPlace)
|
|
{
|
|
if (ld.inputBlobs.size() == 1)
|
|
{
|
|
// Get number of references to the input memory.
|
|
int numRef = numReferences(ld.inputBlobsId[0]);
|
|
// If current layer is one and only customer of this blob.
|
|
inPlace = numRef == 1;
|
|
}
|
|
}
|
|
|
|
ShapesVec shapes(outShapes);
|
|
shapes.insert(shapes.end(), internalShapes.begin(), internalShapes.end());
|
|
std::vector<Mat*> blobs;
|
|
for (int i = 0; i < outputBlobs.size(); i++)
|
|
{
|
|
blobs.push_back(&outputBlobs[i]);
|
|
}
|
|
|
|
for (int i = 0; i < internalBlobs.size(); i++)
|
|
{
|
|
blobs.push_back(&internalBlobs[i]);
|
|
if (total(internalShapes[i]))
|
|
{
|
|
pinsForInternalBlobs.push_back(LayerPin(ld.id, ld.outputBlobs.size() + i));
|
|
}
|
|
}
|
|
|
|
addReferences(pinsForInternalBlobs);
|
|
|
|
std::map<int, std::vector<int>> idxSizes;
|
|
for (int i = 0; i < shapes.size(); i++)
|
|
{
|
|
idxSizes[total(shapes[i])].push_back(i);
|
|
}
|
|
|
|
std::map<int, std::vector<int>>::reverse_iterator it;
|
|
for (it = idxSizes.rbegin(); it != idxSizes.rend(); it++)
|
|
{
|
|
for (int j = 0; j < it->second.size(); j++)
|
|
{
|
|
int index = it->second[j];
|
|
if (total(shapes[index]))
|
|
{
|
|
LayerPin blobPin(ld.id, index);
|
|
if (index < outShapes.size() && inPlace)
|
|
{
|
|
CV_Assert(ld.inputBlobs[0]->total() == total(shapes[index]));
|
|
ld.outputBlobs[index] = ld.inputBlobs[0]->reshape(1, shapes[index]);
|
|
reuse(ld.inputBlobsId[0], blobPin);
|
|
}
|
|
else
|
|
reuseOrCreate(shapes[index], blobPin, *blobs[index], ld.dtype);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Clear internal state. Calls before an every reallocation.
|
|
void reset()
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
|
|
refCounter.clear();
|
|
reuseMap.clear();
|
|
memHosts.clear();
|
|
}
|
|
|
|
private:
|
|
// Register allocated memory.
|
|
void addHost(const LayerPin& lp, const Mat& mat)
|
|
{
|
|
CV_Assert(memHosts.find(lp) == memHosts.end());
|
|
reuseMap[lp] = lp;
|
|
memHosts[lp] = mat;
|
|
}
|
|
|
|
std::map<LayerPin, int> refCounter;
|
|
// Maps pin to origin blob (for whom memory was allocated firstly).
|
|
// For origin blobs key == value.
|
|
std::map<LayerPin, LayerPin> reuseMap;
|
|
std::map<LayerPin, Mat> memHosts;
|
|
}; // BlobManager
|
|
|
|
|
|
Ptr<BackendWrapper> wrapMat(int backendId, int targetId, cv::Mat& m);
|
|
|
|
|
|
} // namespace detail
|
|
CV__DNN_INLINE_NS_END
|
|
}} // namespace cv::dnn
|
|
#endif // __OPENCV_DNN_SRC_LEGACY_BACKEND_HPP__
|