mirror of
https://github.com/opencv/opencv.git
synced 2025-01-13 00:01:27 +08:00
269 lines
7.6 KiB
C++
269 lines
7.6 KiB
C++
#include <iostream>
|
|
#include <iomanip>
|
|
#include <string>
|
|
|
|
#include "cvconfig.h"
|
|
#include "opencv2/core/core.hpp"
|
|
#include "opencv2/highgui/highgui.hpp"
|
|
#include "opencv2/gpu/gpu.hpp"
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
using namespace cv::gpu;
|
|
|
|
void getFlowField(const Mat& u, const Mat& v, Mat& flowField);
|
|
|
|
int main(int argc, const char* argv[])
|
|
{
|
|
try
|
|
{
|
|
const char* keys =
|
|
"{ h | help | false | print help message }"
|
|
"{ l | left | | specify left image }"
|
|
"{ r | right | | specify right image }"
|
|
"{ s | scale | 0.8 | set pyramid scale factor }"
|
|
"{ a | alpha | 0.197 | set alpha }"
|
|
"{ g | gamma | 50.0 | set gamma }"
|
|
"{ i | inner | 10 | set number of inner iterations }"
|
|
"{ o | outer | 77 | set number of outer iterations }"
|
|
"{ si | solver | 10 | set number of basic solver iterations }"
|
|
"{ t | time_step | 0.1 | set frame interpolation time step }";
|
|
|
|
CommandLineParser cmd(argc, argv, keys);
|
|
|
|
if (cmd.get<bool>("help"))
|
|
{
|
|
cout << "Usage: brox_optical_flow [options]" << endl;
|
|
cout << "Avaible options:" << endl;
|
|
cmd.printParams();
|
|
return 0;
|
|
}
|
|
|
|
string frame0Name = cmd.get<string>("left");
|
|
string frame1Name = cmd.get<string>("right");
|
|
float scale = cmd.get<float>("scale");
|
|
float alpha = cmd.get<float>("alpha");
|
|
float gamma = cmd.get<float>("gamma");
|
|
int inner_iterations = cmd.get<int>("inner");
|
|
int outer_iterations = cmd.get<int>("outer");
|
|
int solver_iterations = cmd.get<int>("solver");
|
|
float timeStep = cmd.get<float>("time_step");
|
|
|
|
if (frame0Name.empty() || frame1Name.empty())
|
|
{
|
|
cerr << "Missing input file names" << endl;
|
|
return -1;
|
|
}
|
|
|
|
Mat frame0Color = imread(frame0Name);
|
|
Mat frame1Color = imread(frame1Name);
|
|
|
|
if (frame0Color.empty() || frame1Color.empty())
|
|
{
|
|
cout << "Can't load input images" << endl;
|
|
return -1;
|
|
}
|
|
|
|
cv::gpu::printShortCudaDeviceInfo(cv::gpu::getDevice());
|
|
|
|
cout << "OpenCV / NVIDIA Computer Vision" << endl;
|
|
cout << "Optical Flow Demo: Frame Interpolation" << endl;
|
|
cout << "=========================================" << endl;
|
|
|
|
namedWindow("Forward flow");
|
|
namedWindow("Backward flow");
|
|
|
|
namedWindow("Interpolated frame");
|
|
|
|
cout << "Press:" << endl;
|
|
cout << "\tESC to quit" << endl;
|
|
cout << "\t'a' to move to the previous frame" << endl;
|
|
cout << "\t's' to move to the next frame\n" << endl;
|
|
|
|
frame0Color.convertTo(frame0Color, CV_32F, 1.0 / 255.0);
|
|
frame1Color.convertTo(frame1Color, CV_32F, 1.0 / 255.0);
|
|
|
|
Mat frame0Gray, frame1Gray;
|
|
|
|
cvtColor(frame0Color, frame0Gray, COLOR_BGR2GRAY);
|
|
cvtColor(frame1Color, frame1Gray, COLOR_BGR2GRAY);
|
|
|
|
GpuMat d_frame0(frame0Gray);
|
|
GpuMat d_frame1(frame1Gray);
|
|
|
|
cout << "Estimating optical flow" << endl;
|
|
|
|
BroxOpticalFlow d_flow(alpha, gamma, scale, inner_iterations, outer_iterations, solver_iterations);
|
|
|
|
cout << "\tForward..." << endl;
|
|
|
|
GpuMat d_fu, d_fv;
|
|
|
|
d_flow(d_frame0, d_frame1, d_fu, d_fv);
|
|
|
|
Mat flowFieldForward;
|
|
getFlowField(Mat(d_fu), Mat(d_fv), flowFieldForward);
|
|
|
|
cout << "\tBackward..." << endl;
|
|
|
|
GpuMat d_bu, d_bv;
|
|
|
|
d_flow(d_frame1, d_frame0, d_bu, d_bv);
|
|
|
|
Mat flowFieldBackward;
|
|
getFlowField(Mat(d_bu), Mat(d_bv), flowFieldBackward);
|
|
|
|
cout << "Interpolating..." << endl;
|
|
|
|
// first frame color components
|
|
GpuMat d_b, d_g, d_r;
|
|
|
|
// second frame color components
|
|
GpuMat d_bt, d_gt, d_rt;
|
|
|
|
// prepare color components on host and copy them to device memory
|
|
Mat channels[3];
|
|
cv::split(frame0Color, channels);
|
|
|
|
d_b.upload(channels[0]);
|
|
d_g.upload(channels[1]);
|
|
d_r.upload(channels[2]);
|
|
|
|
cv::split(frame1Color, channels);
|
|
|
|
d_bt.upload(channels[0]);
|
|
d_gt.upload(channels[1]);
|
|
d_rt.upload(channels[2]);
|
|
|
|
// temporary buffer
|
|
GpuMat d_buf;
|
|
|
|
// intermediate frame color components (GPU memory)
|
|
GpuMat d_rNew, d_gNew, d_bNew;
|
|
|
|
GpuMat d_newFrame;
|
|
|
|
vector<Mat> frames;
|
|
frames.reserve(static_cast<int>(1.0f / timeStep) + 2);
|
|
|
|
frames.push_back(frame0Color);
|
|
|
|
// compute interpolated frames
|
|
for (float timePos = timeStep; timePos < 1.0f; timePos += timeStep)
|
|
{
|
|
// interpolate blue channel
|
|
interpolateFrames(d_b, d_bt, d_fu, d_fv, d_bu, d_bv, timePos, d_bNew, d_buf);
|
|
|
|
// interpolate green channel
|
|
interpolateFrames(d_g, d_gt, d_fu, d_fv, d_bu, d_bv, timePos, d_gNew, d_buf);
|
|
|
|
// interpolate red channel
|
|
interpolateFrames(d_r, d_rt, d_fu, d_fv, d_bu, d_bv, timePos, d_rNew, d_buf);
|
|
|
|
GpuMat channels3[] = {d_bNew, d_gNew, d_rNew};
|
|
merge(channels3, 3, d_newFrame);
|
|
|
|
frames.push_back(Mat(d_newFrame));
|
|
|
|
cout << setprecision(4) << timePos * 100.0f << "%\r";
|
|
}
|
|
|
|
frames.push_back(frame1Color);
|
|
|
|
cout << setw(5) << "100%" << endl;
|
|
|
|
cout << "Done" << endl;
|
|
|
|
imshow("Forward flow", flowFieldForward);
|
|
imshow("Backward flow", flowFieldBackward);
|
|
|
|
int currentFrame = 0;
|
|
|
|
imshow("Interpolated frame", frames[currentFrame]);
|
|
|
|
for(;;)
|
|
{
|
|
int key = toupper(waitKey(10) & 0xff);
|
|
|
|
switch (key)
|
|
{
|
|
case 27:
|
|
return 0;
|
|
|
|
case 'A':
|
|
if (currentFrame > 0)
|
|
--currentFrame;
|
|
|
|
imshow("Interpolated frame", frames[currentFrame]);
|
|
break;
|
|
|
|
case 'S':
|
|
if (currentFrame < static_cast<int>(frames.size()) - 1)
|
|
++currentFrame;
|
|
|
|
imshow("Interpolated frame", frames[currentFrame]);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
catch (const exception& ex)
|
|
{
|
|
cerr << ex.what() << endl;
|
|
return -1;
|
|
}
|
|
catch (...)
|
|
{
|
|
cerr << "Unknow error" << endl;
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
template <typename T> inline T clamp (T x, T a, T b)
|
|
{
|
|
return ((x) > (a) ? ((x) < (b) ? (x) : (b)) : (a));
|
|
}
|
|
|
|
template <typename T> inline T mapValue(T x, T a, T b, T c, T d)
|
|
{
|
|
x = clamp(x, a, b);
|
|
return c + (d - c) * (x - a) / (b - a);
|
|
}
|
|
|
|
void getFlowField(const Mat& u, const Mat& v, Mat& flowField)
|
|
{
|
|
float maxDisplacement = 1.0f;
|
|
|
|
for (int i = 0; i < u.rows; ++i)
|
|
{
|
|
const float* ptr_u = u.ptr<float>(i);
|
|
const float* ptr_v = v.ptr<float>(i);
|
|
|
|
for (int j = 0; j < u.cols; ++j)
|
|
{
|
|
float d = max(fabsf(ptr_u[j]), fabsf(ptr_v[j]));
|
|
|
|
if (d > maxDisplacement)
|
|
maxDisplacement = d;
|
|
}
|
|
}
|
|
|
|
flowField.create(u.size(), CV_8UC4);
|
|
|
|
for (int i = 0; i < flowField.rows; ++i)
|
|
{
|
|
const float* ptr_u = u.ptr<float>(i);
|
|
const float* ptr_v = v.ptr<float>(i);
|
|
|
|
|
|
Vec4b* row = flowField.ptr<Vec4b>(i);
|
|
|
|
for (int j = 0; j < flowField.cols; ++j)
|
|
{
|
|
row[j][0] = 0;
|
|
row[j][1] = static_cast<unsigned char> (mapValue (-ptr_v[j], -maxDisplacement, maxDisplacement, 0.0f, 255.0f));
|
|
row[j][2] = static_cast<unsigned char> (mapValue ( ptr_u[j], -maxDisplacement, maxDisplacement, 0.0f, 255.0f));
|
|
row[j][3] = 255;
|
|
}
|
|
}
|
|
}
|