opencv/modules/imgcodecs/src/grfmt_tiff.cpp
Ilari Venäläinen e6c41f0de6 Merge pull request #12989 from venalil:fix_thresholded_tiff_read
* Fix reading of black-and-white (thresholded) TIFF images

I recently updated my local OpenCV version to 3.4.3 and found out that
I could not read my TIFF images related to my project. After debugging I
found out that there has been some static analysis fixes made
that accidentally have broken reading those black-and-white TIFF images.

Commit hash in which reading of mentioned TIFF images has been broken:
cbb1e867e5

Basically the fix is to revert back to the same functionality that has been there before,
when black-and-white images are read bpp (bitspersample) is 1.
Without the case 1: this TiffDecoder::readHeader() function always return false.

* Added type and default error message

* Added stdexcept include

* Use CV_Error instead of throw std::runtime_error

* imgcodecs(test): add TIFF B/W decoding tests
2018-11-01 14:34:34 +03:00

1008 lines
33 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/****************************************************************************************\
A part of the file implements TIFF reader on base of libtiff library
(see otherlibs/_graphics/readme.txt for copyright notice)
\****************************************************************************************/
#include "precomp.hpp"
#ifdef HAVE_TIFF
#include "grfmt_tiff.hpp"
#include <limits>
// TODO FIXIT Conflict declarations for common types like int64/uint64
namespace tiff_dummy_namespace {
#include "tiff.h"
#include "tiffio.h"
}
using namespace tiff_dummy_namespace;
namespace cv
{
static const char fmtSignTiffII[] = "II\x2a\x00";
static const char fmtSignTiffMM[] = "MM\x00\x2a";
static int grfmt_tiff_err_handler_init = 0;
static void GrFmtSilentTIFFErrorHandler( const char*, const char*, va_list ) {}
TiffDecoder::TiffDecoder()
{
m_tif = 0;
if( !grfmt_tiff_err_handler_init )
{
grfmt_tiff_err_handler_init = 1;
TIFFSetErrorHandler( GrFmtSilentTIFFErrorHandler );
TIFFSetWarningHandler( GrFmtSilentTIFFErrorHandler );
}
m_hdr = false;
m_buf_supported = true;
m_buf_pos = 0;
}
void TiffDecoder::close()
{
if( m_tif )
{
TIFF* tif = (TIFF*)m_tif;
TIFFClose( tif );
m_tif = 0;
}
}
TiffDecoder::~TiffDecoder()
{
close();
}
size_t TiffDecoder::signatureLength() const
{
return 4;
}
bool TiffDecoder::checkSignature( const String& signature ) const
{
return signature.size() >= 4 &&
(memcmp(signature.c_str(), fmtSignTiffII, 4) == 0 ||
memcmp(signature.c_str(), fmtSignTiffMM, 4) == 0);
}
int TiffDecoder::normalizeChannelsNumber(int channels) const
{
return channels > 4 ? 4 : channels;
}
ImageDecoder TiffDecoder::newDecoder() const
{
return makePtr<TiffDecoder>();
}
class TiffDecoderBufHelper
{
Mat& m_buf;
size_t& m_buf_pos;
public:
TiffDecoderBufHelper(Mat& buf, size_t& buf_pos) :
m_buf(buf), m_buf_pos(buf_pos)
{}
static tmsize_t read( thandle_t handle, void* buffer, tmsize_t n )
{
TiffDecoderBufHelper *helper = reinterpret_cast<TiffDecoderBufHelper*>(handle);
const Mat& buf = helper->m_buf;
const tmsize_t size = buf.cols*buf.rows*buf.elemSize();
tmsize_t pos = helper->m_buf_pos;
if ( n > (size - pos) )
{
n = size - pos;
}
memcpy(buffer, buf.ptr() + pos, n);
helper->m_buf_pos += n;
return n;
}
static tmsize_t write( thandle_t /*handle*/, void* /*buffer*/, tmsize_t /*n*/ )
{
// Not used for decoding.
return 0;
}
static toff_t seek( thandle_t handle, toff_t offset, int whence )
{
TiffDecoderBufHelper *helper = reinterpret_cast<TiffDecoderBufHelper*>(handle);
const Mat& buf = helper->m_buf;
const toff_t size = buf.cols*buf.rows*buf.elemSize();
toff_t new_pos = helper->m_buf_pos;
switch (whence)
{
case SEEK_SET:
new_pos = offset;
break;
case SEEK_CUR:
new_pos += offset;
break;
case SEEK_END:
new_pos = size + offset;
break;
}
new_pos = std::min(new_pos, size);
helper->m_buf_pos = (size_t)new_pos;
return new_pos;
}
static int map( thandle_t handle, void** base, toff_t* size )
{
TiffDecoderBufHelper *helper = reinterpret_cast<TiffDecoderBufHelper*>(handle);
Mat& buf = helper->m_buf;
*base = buf.ptr();
*size = buf.cols*buf.rows*buf.elemSize();
return 0;
}
static toff_t size( thandle_t handle )
{
TiffDecoderBufHelper *helper = reinterpret_cast<TiffDecoderBufHelper*>(handle);
const Mat& buf = helper->m_buf;
return buf.cols*buf.rows*buf.elemSize();
}
static int close( thandle_t handle )
{
TiffDecoderBufHelper *helper = reinterpret_cast<TiffDecoderBufHelper*>(handle);
delete helper;
return 0;
}
};
bool TiffDecoder::readHeader()
{
bool result = false;
TIFF* tif = static_cast<TIFF*>(m_tif);
if (!m_tif)
{
// TIFFOpen() mode flags are different to fopen(). A 'b' in mode "rb" has no effect when reading.
// http://www.remotesensing.org/libtiff/man/TIFFOpen.3tiff.html
if ( !m_buf.empty() )
{
m_buf_pos = 0;
TiffDecoderBufHelper* buf_helper = new TiffDecoderBufHelper(this->m_buf, this->m_buf_pos);
tif = TIFFClientOpen( "", "r", reinterpret_cast<thandle_t>(buf_helper), &TiffDecoderBufHelper::read,
&TiffDecoderBufHelper::write, &TiffDecoderBufHelper::seek,
&TiffDecoderBufHelper::close, &TiffDecoderBufHelper::size,
&TiffDecoderBufHelper::map, /*unmap=*/0 );
}
else
{
tif = TIFFOpen(m_filename.c_str(), "r");
}
}
if( tif )
{
uint32 wdth = 0, hght = 0;
uint16 photometric = 0;
m_tif = tif;
if( TIFFGetField( tif, TIFFTAG_IMAGEWIDTH, &wdth ) &&
TIFFGetField( tif, TIFFTAG_IMAGELENGTH, &hght ) &&
TIFFGetField( tif, TIFFTAG_PHOTOMETRIC, &photometric ))
{
uint16 bpp=8, ncn = photometric > 1 ? 3 : 1;
TIFFGetField( tif, TIFFTAG_BITSPERSAMPLE, &bpp );
TIFFGetField( tif, TIFFTAG_SAMPLESPERPIXEL, &ncn );
m_width = wdth;
m_height = hght;
if((bpp == 32 && ncn == 3) || photometric == PHOTOMETRIC_LOGLUV)
{
m_type = CV_32FC3;
m_hdr = true;
return true;
}
m_hdr = false;
if( bpp > 8 &&
((photometric > 2) ||
(ncn != 1 && ncn != 3 && ncn != 4)))
bpp = 8;
int wanted_channels = normalizeChannelsNumber(ncn);
switch(bpp)
{
case 1:
m_type = CV_MAKETYPE(CV_8U, photometric > 1 ? wanted_channels : 1);
result = true;
break;
case 8:
m_type = CV_MAKETYPE(CV_8U, photometric > 1 ? wanted_channels : 1);
result = true;
break;
case 16:
m_type = CV_MAKETYPE(CV_16U, photometric > 1 ? wanted_channels : 1);
result = true;
break;
case 32:
m_type = CV_MAKETYPE(CV_32F, photometric > 1 ? 3 : 1);
result = true;
break;
case 64:
m_type = CV_MAKETYPE(CV_64F, photometric > 1 ? 3 : 1);
result = true;
break;
default:
CV_Error(cv::Error::StsError, "Invalid bitsperpixel value read from TIFF header! Must be 1, 8, 16, 32 or 64.");
}
}
}
if( !result )
close();
return result;
}
bool TiffDecoder::nextPage()
{
// Prepare the next page, if any.
return m_tif &&
TIFFReadDirectory(static_cast<TIFF*>(m_tif)) &&
readHeader();
}
bool TiffDecoder::readData( Mat& img )
{
if(m_hdr && img.type() == CV_32FC3)
{
return readData_32FC3(img);
}
if(img.type() == CV_32FC1)
{
return readData_32FC1(img);
}
bool result = false;
bool color = img.channels() > 1;
if( img.depth() != CV_8U && img.depth() != CV_16U && img.depth() != CV_32F && img.depth() != CV_64F )
return false;
if( m_tif && m_width && m_height )
{
TIFF* tif = (TIFF*)m_tif;
uint32 tile_width0 = m_width, tile_height0 = 0;
int x, y, i;
int is_tiled = TIFFIsTiled(tif);
uint16 photometric;
TIFFGetField( tif, TIFFTAG_PHOTOMETRIC, &photometric );
uint16 bpp = 8, ncn = photometric > 1 ? 3 : 1;
TIFFGetField( tif, TIFFTAG_BITSPERSAMPLE, &bpp );
TIFFGetField( tif, TIFFTAG_SAMPLESPERPIXEL, &ncn );
uint16 img_orientation = ORIENTATION_TOPLEFT;
TIFFGetField( tif, TIFFTAG_ORIENTATION, &img_orientation);
bool vert_flip = (img_orientation == ORIENTATION_BOTRIGHT) || (img_orientation == ORIENTATION_RIGHTBOT) ||
(img_orientation == ORIENTATION_BOTLEFT) || (img_orientation == ORIENTATION_LEFTBOT);
const int bitsPerByte = 8;
int dst_bpp = (int)(img.elemSize1() * bitsPerByte);
int wanted_channels = normalizeChannelsNumber(img.channels());
if(dst_bpp == 8)
{
char errmsg[1024];
if(!TIFFRGBAImageOK( tif, errmsg ))
{
close();
return false;
}
}
if( (!is_tiled) ||
(is_tiled &&
TIFFGetField( tif, TIFFTAG_TILEWIDTH, &tile_width0 ) &&
TIFFGetField( tif, TIFFTAG_TILELENGTH, &tile_height0 )))
{
if(!is_tiled)
TIFFGetField( tif, TIFFTAG_ROWSPERSTRIP, &tile_height0 );
if( tile_width0 <= 0 )
tile_width0 = m_width;
if( tile_height0 <= 0 ||
(!is_tiled && tile_height0 == std::numeric_limits<uint32>::max()) )
tile_height0 = m_height;
if(dst_bpp == 8) {
// we will use TIFFReadRGBA* functions, so allocate temporary buffer for 32bit RGBA
bpp = 8;
ncn = 4;
}
const size_t buffer_size = (bpp/bitsPerByte) * ncn * tile_height0 * tile_width0;
AutoBuffer<uchar> _buffer( buffer_size );
uchar* buffer = _buffer.data();
ushort* buffer16 = (ushort*)buffer;
float* buffer32 = (float*)buffer;
double* buffer64 = (double*)buffer;
int tileidx = 0;
for( y = 0; y < m_height; y += tile_height0 )
{
int tile_height = tile_height0;
if( y + tile_height > m_height )
tile_height = m_height - y;
uchar* data = img.ptr(vert_flip ? m_height - y - tile_height : y);
for( x = 0; x < m_width; x += tile_width0, tileidx++ )
{
int tile_width = tile_width0, ok;
if( x + tile_width > m_width )
tile_width = m_width - x;
switch(dst_bpp)
{
case 8:
{
uchar * bstart = buffer;
if( !is_tiled )
ok = TIFFReadRGBAStrip( tif, y, (uint32*)buffer );
else
{
ok = TIFFReadRGBATile( tif, x, y, (uint32*)buffer );
//Tiles fill the buffer from the bottom up
bstart += (tile_height0 - tile_height) * tile_width0 * 4;
}
if( !ok )
{
close();
return false;
}
for( i = 0; i < tile_height; i++ )
if( color )
{
if (wanted_channels == 4)
{
icvCvt_BGRA2RGBA_8u_C4R( bstart + i*tile_width0*4, 0,
data + x*4 + img.step*(tile_height - i - 1), 0,
cvSize(tile_width,1) );
}
else
{
icvCvt_BGRA2BGR_8u_C4C3R( bstart + i*tile_width0*4, 0,
data + x*3 + img.step*(tile_height - i - 1), 0,
cvSize(tile_width,1), 2 );
}
}
else
icvCvt_BGRA2Gray_8u_C4C1R( bstart + i*tile_width0*4, 0,
data + x + img.step*(tile_height - i - 1), 0,
cvSize(tile_width,1), 2 );
break;
}
case 16:
{
if( !is_tiled )
ok = (int)TIFFReadEncodedStrip( tif, tileidx, (uint32*)buffer, buffer_size ) >= 0;
else
ok = (int)TIFFReadEncodedTile( tif, tileidx, (uint32*)buffer, buffer_size ) >= 0;
if( !ok )
{
close();
return false;
}
for( i = 0; i < tile_height; i++ )
{
if( color )
{
if( ncn == 1 )
{
icvCvt_Gray2BGR_16u_C1C3R(buffer16 + i*tile_width0*ncn, 0,
(ushort*)(data + img.step*i) + x*3, 0,
cvSize(tile_width,1) );
}
else if( ncn == 3 )
{
icvCvt_RGB2BGR_16u_C3R(buffer16 + i*tile_width0*ncn, 0,
(ushort*)(data + img.step*i) + x*3, 0,
cvSize(tile_width,1) );
}
else if (ncn == 4)
{
if (wanted_channels == 4)
{
icvCvt_BGRA2RGBA_16u_C4R(buffer16 + i*tile_width0*ncn, 0,
(ushort*)(data + img.step*i) + x * 4, 0,
cvSize(tile_width, 1));
}
else
{
icvCvt_BGRA2BGR_16u_C4C3R(buffer16 + i*tile_width0*ncn, 0,
(ushort*)(data + img.step*i) + x * 3, 0,
cvSize(tile_width, 1), 2);
}
}
else
{
icvCvt_BGRA2BGR_16u_C4C3R(buffer16 + i*tile_width0*ncn, 0,
(ushort*)(data + img.step*i) + x*3, 0,
cvSize(tile_width,1), 2 );
}
}
else
{
if( ncn == 1 )
{
memcpy((ushort*)(data + img.step*i)+x,
buffer16 + i*tile_width0*ncn,
tile_width*sizeof(buffer16[0]));
}
else
{
icvCvt_BGRA2Gray_16u_CnC1R(buffer16 + i*tile_width0*ncn, 0,
(ushort*)(data + img.step*i) + x, 0,
cvSize(tile_width,1), ncn, 2 );
}
}
}
break;
}
case 32:
case 64:
{
if( !is_tiled )
ok = (int)TIFFReadEncodedStrip( tif, tileidx, buffer, buffer_size ) >= 0;
else
ok = (int)TIFFReadEncodedTile( tif, tileidx, buffer, buffer_size ) >= 0;
if( !ok || ncn != 1 )
{
close();
return false;
}
for( i = 0; i < tile_height; i++ )
{
if(dst_bpp == 32)
{
memcpy((float*)(data + img.step*i)+x,
buffer32 + i*tile_width0*ncn,
tile_width*sizeof(buffer32[0]));
}
else
{
memcpy((double*)(data + img.step*i)+x,
buffer64 + i*tile_width0*ncn,
tile_width*sizeof(buffer64[0]));
}
}
break;
}
default:
{
close();
return false;
}
}
}
}
result = true;
}
}
return result;
}
bool TiffDecoder::readData_32FC3(Mat& img)
{
int rows_per_strip = 0, photometric = 0;
if(!m_tif)
{
return false;
}
TIFF *tif = static_cast<TIFF*>(m_tif);
TIFFGetField(tif, TIFFTAG_ROWSPERSTRIP, &rows_per_strip);
TIFFGetField( tif, TIFFTAG_PHOTOMETRIC, &photometric );
TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_FLOAT);
int size = 3 * m_width * m_height * sizeof (float);
tstrip_t strip_size = 3 * m_width * rows_per_strip;
float *ptr = img.ptr<float>();
for (tstrip_t i = 0; i < TIFFNumberOfStrips(tif); i++, ptr += strip_size)
{
TIFFReadEncodedStrip(tif, i, ptr, size);
size -= strip_size * sizeof(float);
}
close();
if(photometric == PHOTOMETRIC_LOGLUV)
{
cvtColor(img, img, COLOR_XYZ2BGR);
}
else
{
cvtColor(img, img, COLOR_RGB2BGR);
}
return true;
}
bool TiffDecoder::readData_32FC1(Mat& img)
{
if(!m_tif)
{
return false;
}
TIFF *tif = static_cast<TIFF*>(m_tif);
uint32 img_width, img_height;
TIFFGetField(tif,TIFFTAG_IMAGEWIDTH, &img_width);
TIFFGetField(tif,TIFFTAG_IMAGELENGTH, &img_height);
if(img.size() != Size(img_width,img_height))
{
close();
return false;
}
tsize_t scanlength = TIFFScanlineSize(tif);
tdata_t buf = _TIFFmalloc(scanlength);
float* data;
bool result = true;
for (uint32 row = 0; row < img_height; row++)
{
if (TIFFReadScanline(tif, buf, row) != 1)
{
result = false;
break;
}
data=(float*)buf;
for (uint32 i=0; i<img_width; i++)
{
img.at<float>(row,i) = data[i];
}
}
_TIFFfree(buf);
close();
return result;
}
//////////////////////////////////////////////////////////////////////////////////////////
TiffEncoder::TiffEncoder()
{
m_description = "TIFF Files (*.tiff;*.tif)";
m_buf_supported = true;
}
TiffEncoder::~TiffEncoder()
{
}
ImageEncoder TiffEncoder::newEncoder() const
{
return makePtr<TiffEncoder>();
}
bool TiffEncoder::isFormatSupported( int depth ) const
{
return depth == CV_8U || depth == CV_16U || depth == CV_32F;
}
void TiffEncoder::writeTag( WLByteStream& strm, TiffTag tag,
TiffFieldType fieldType,
int count, int value )
{
strm.putWord( tag );
strm.putWord( fieldType );
strm.putDWord( count );
strm.putDWord( value );
}
class TiffEncoderBufHelper
{
public:
TiffEncoderBufHelper(std::vector<uchar> *buf)
: m_buf(buf), m_buf_pos(0)
{}
TIFF* open ()
{
return TIFFClientOpen( "", "w", reinterpret_cast<thandle_t>(this), &TiffEncoderBufHelper::read,
&TiffEncoderBufHelper::write, &TiffEncoderBufHelper::seek,
&TiffEncoderBufHelper::close, &TiffEncoderBufHelper::size,
/*map=*/0, /*unmap=*/0 );
}
static tmsize_t read( thandle_t /*handle*/, void* /*buffer*/, tmsize_t /*n*/ )
{
// Not used for encoding.
return 0;
}
static tmsize_t write( thandle_t handle, void* buffer, tmsize_t n )
{
TiffEncoderBufHelper *helper = reinterpret_cast<TiffEncoderBufHelper*>(handle);
size_t begin = (size_t)helper->m_buf_pos;
size_t end = begin + n;
if ( helper->m_buf->size() < end )
{
helper->m_buf->resize(end);
}
memcpy(&(*helper->m_buf)[begin], buffer, n);
helper->m_buf_pos = end;
return n;
}
static toff_t seek( thandle_t handle, toff_t offset, int whence )
{
TiffEncoderBufHelper *helper = reinterpret_cast<TiffEncoderBufHelper*>(handle);
const toff_t size = helper->m_buf->size();
toff_t new_pos = helper->m_buf_pos;
switch (whence)
{
case SEEK_SET:
new_pos = offset;
break;
case SEEK_CUR:
new_pos += offset;
break;
case SEEK_END:
new_pos = size + offset;
break;
}
helper->m_buf_pos = new_pos;
return new_pos;
}
static toff_t size( thandle_t handle )
{
TiffEncoderBufHelper *helper = reinterpret_cast<TiffEncoderBufHelper*>(handle);
return helper->m_buf->size();
}
static int close( thandle_t /*handle*/ )
{
// Do nothing.
return 0;
}
private:
std::vector<uchar>* m_buf;
toff_t m_buf_pos;
};
static void readParam(const std::vector<int>& params, int key, int& value)
{
for(size_t i = 0; i + 1 < params.size(); i += 2)
if(params[i] == key)
{
value = params[i+1];
break;
}
}
bool TiffEncoder::writeLibTiff( const std::vector<Mat>& img_vec, const std::vector<int>& params)
{
// do NOT put "wb" as the mode, because the b means "big endian" mode, not "binary" mode.
// http://www.remotesensing.org/libtiff/man/TIFFOpen.3tiff.html
TIFF* pTiffHandle;
TiffEncoderBufHelper buf_helper(m_buf);
if ( m_buf )
{
pTiffHandle = buf_helper.open();
}
else
{
pTiffHandle = TIFFOpen(m_filename.c_str(), "w");
}
if (!pTiffHandle)
{
return false;
}
//Settings that matter to all images
// defaults for now, maybe base them on params in the future
int compression = COMPRESSION_LZW;
int predictor = PREDICTOR_HORIZONTAL;
int resUnit = -1, dpiX = -1, dpiY = -1;
readParam(params, TIFFTAG_COMPRESSION, compression);
readParam(params, TIFFTAG_PREDICTOR, predictor);
readParam(params, IMWRITE_TIFF_RESUNIT, resUnit);
readParam(params, IMWRITE_TIFF_XDPI, dpiX);
readParam(params, IMWRITE_TIFF_YDPI, dpiY);
//Iterate through each image in the vector and write them out as Tiff directories
for (size_t page = 0; page < img_vec.size(); page++)
{
const Mat& img = img_vec[page];
int channels = img.channels();
int width = img.cols, height = img.rows;
int depth = img.depth();
int bitsPerChannel = -1;
switch (depth)
{
case CV_8U:
{
bitsPerChannel = 8;
break;
}
case CV_16U:
{
bitsPerChannel = 16;
break;
}
default:
{
TIFFClose(pTiffHandle);
return false;
}
}
const int bitsPerByte = 8;
size_t fileStep = (width * channels * bitsPerChannel) / bitsPerByte;
int rowsPerStrip = (int)((1 << 13) / fileStep);
readParam(params, TIFFTAG_ROWSPERSTRIP, rowsPerStrip);
if (rowsPerStrip < 1)
rowsPerStrip = 1;
if (rowsPerStrip > height)
rowsPerStrip = height;
int colorspace = channels > 1 ? PHOTOMETRIC_RGB : PHOTOMETRIC_MINISBLACK;
if (!TIFFSetField(pTiffHandle, TIFFTAG_IMAGEWIDTH, width)
|| !TIFFSetField(pTiffHandle, TIFFTAG_IMAGELENGTH, height)
|| !TIFFSetField(pTiffHandle, TIFFTAG_BITSPERSAMPLE, bitsPerChannel)
|| !TIFFSetField(pTiffHandle, TIFFTAG_COMPRESSION, compression)
|| !TIFFSetField(pTiffHandle, TIFFTAG_PHOTOMETRIC, colorspace)
|| !TIFFSetField(pTiffHandle, TIFFTAG_SAMPLESPERPIXEL, channels)
|| !TIFFSetField(pTiffHandle, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG)
|| !TIFFSetField(pTiffHandle, TIFFTAG_ROWSPERSTRIP, rowsPerStrip)
|| (img_vec.size() > 1 && (
!TIFFSetField(pTiffHandle, TIFFTAG_SUBFILETYPE, FILETYPE_PAGE)
|| !TIFFSetField(pTiffHandle, TIFFTAG_PAGENUMBER, page, img_vec.size() )))
)
{
TIFFClose(pTiffHandle);
return false;
}
if (compression != COMPRESSION_NONE && !TIFFSetField(pTiffHandle, TIFFTAG_PREDICTOR, predictor))
{
TIFFClose(pTiffHandle);
return false;
}
if (((resUnit >= RESUNIT_NONE && resUnit <= RESUNIT_CENTIMETER) && !TIFFSetField(pTiffHandle, TIFFTAG_RESOLUTIONUNIT, resUnit))
|| (dpiX >= 0 && !TIFFSetField(pTiffHandle, TIFFTAG_XRESOLUTION, (float)dpiX))
|| (dpiY >= 0 && !TIFFSetField(pTiffHandle, TIFFTAG_YRESOLUTION, (float)dpiY))
)
{
TIFFClose(pTiffHandle);
return false;
}
// row buffer, because TIFFWriteScanline modifies the original data!
size_t scanlineSize = TIFFScanlineSize(pTiffHandle);
AutoBuffer<uchar> _buffer(scanlineSize + 32);
uchar* buffer = _buffer.data();
if (!buffer)
{
TIFFClose(pTiffHandle);
return false;
}
for (int y = 0; y < height; ++y)
{
switch (channels)
{
case 1:
{
memcpy(buffer, img.ptr(y), scanlineSize);
break;
}
case 3:
{
if (depth == CV_8U)
icvCvt_BGR2RGB_8u_C3R( img.ptr(y), 0, buffer, 0, cvSize(width, 1));
else
icvCvt_BGR2RGB_16u_C3R( img.ptr<ushort>(y), 0, (ushort*)buffer, 0, cvSize(width, 1));
break;
}
case 4:
{
if (depth == CV_8U)
icvCvt_BGRA2RGBA_8u_C4R( img.ptr(y), 0, buffer, 0, cvSize(width, 1));
else
icvCvt_BGRA2RGBA_16u_C4R( img.ptr<ushort>(y), 0, (ushort*)buffer, 0, cvSize(width, 1));
break;
}
default:
{
TIFFClose(pTiffHandle);
return false;
}
}
int writeResult = TIFFWriteScanline(pTiffHandle, buffer, y, 0);
if (writeResult != 1)
{
TIFFClose(pTiffHandle);
return false;
}
}
TIFFWriteDirectory(pTiffHandle);
}
TIFFClose(pTiffHandle);
return true;
}
bool TiffEncoder::write_32FC3(const Mat& _img)
{
Mat img;
cvtColor(_img, img, COLOR_BGR2XYZ);
TIFF* tif;
TiffEncoderBufHelper buf_helper(m_buf);
if ( m_buf )
{
tif = buf_helper.open();
}
else
{
tif = TIFFOpen(m_filename.c_str(), "w");
}
if (!tif)
{
return false;
}
TIFFSetField(tif, TIFFTAG_IMAGEWIDTH, img.cols);
TIFFSetField(tif, TIFFTAG_IMAGELENGTH, img.rows);
TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, 3);
TIFFSetField(tif, TIFFTAG_COMPRESSION, COMPRESSION_SGILOG);
TIFFSetField(tif, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_LOGLUV);
TIFFSetField(tif, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG);
TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_FLOAT);
TIFFSetField(tif, TIFFTAG_ROWSPERSTRIP, 1);
int strip_size = 3 * img.cols;
float *ptr = const_cast<float*>(img.ptr<float>());
for (int i = 0; i < img.rows; i++, ptr += strip_size)
{
TIFFWriteEncodedStrip(tif, i, ptr, strip_size * sizeof(float));
}
TIFFClose(tif);
return true;
}
bool TiffEncoder::write_32FC1(const Mat& _img)
{
TIFF* tif;
TiffEncoderBufHelper buf_helper(m_buf);
if ( m_buf )
{
tif = buf_helper.open();
}
else
{
tif = TIFFOpen(m_filename.c_str(), "w");
}
if (!tif)
{
return false;
}
TIFFSetField(tif, TIFFTAG_IMAGEWIDTH, _img.cols);
TIFFSetField(tif, TIFFTAG_IMAGELENGTH, _img.rows);
TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, 1);
TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 32);
TIFFSetField(tif, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_MINISBLACK);
TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_IEEEFP);
TIFFSetField(tif, TIFFTAG_COMPRESSION, COMPRESSION_NONE);
for (uint32 row = 0; row < (uint32)_img.rows; row++)
{
if (TIFFWriteScanline(tif, (tdata_t)_img.ptr<float>(row), row, 1) != 1)
{
TIFFClose(tif);
return false;
}
}
TIFFWriteDirectory(tif);
TIFFClose(tif);
return true;
}
bool TiffEncoder::writemulti(const std::vector<Mat>& img_vec, const std::vector<int>& params)
{
return writeLibTiff(img_vec, params);
}
bool TiffEncoder::write( const Mat& img, const std::vector<int>& params)
{
int depth = img.depth();
if(img.type() == CV_32FC3)
{
return write_32FC3(img);
}
if(img.type() == CV_32FC1)
{
return write_32FC1(img);
}
CV_Assert(depth == CV_8U || depth == CV_16U);
std::vector<Mat> img_vec;
img_vec.push_back(img);
return writeLibTiff(img_vec, params);
}
} // namespace
#endif