mirror of
https://github.com/opencv/opencv.git
synced 2024-12-05 09:49:12 +08:00
363 lines
10 KiB
C++
363 lines
10 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
#ifdef HAVE_CUDA
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// HistEven
|
|
|
|
PARAM_TEST_CASE(HistEven, cv::cuda::DeviceInfo, cv::Size)
|
|
{
|
|
cv::cuda::DeviceInfo devInfo;
|
|
cv::Size size;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
size = GET_PARAM(1);
|
|
|
|
cv::cuda::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
CUDA_TEST_P(HistEven, Accuracy)
|
|
{
|
|
cv::Mat src = randomMat(size, CV_8UC1);
|
|
|
|
int hbins = 30;
|
|
float hranges[] = {50.0f, 200.0f};
|
|
|
|
cv::cuda::GpuMat hist;
|
|
cv::cuda::histEven(loadMat(src), hist, hbins, (int) hranges[0], (int) hranges[1]);
|
|
|
|
cv::Mat hist_gold;
|
|
|
|
int histSize[] = {hbins};
|
|
const float* ranges[] = {hranges};
|
|
int channels[] = {0};
|
|
cv::calcHist(&src, 1, channels, cv::Mat(), hist_gold, 1, histSize, ranges);
|
|
|
|
hist_gold = hist_gold.t();
|
|
hist_gold.convertTo(hist_gold, CV_32S);
|
|
|
|
EXPECT_MAT_NEAR(hist_gold, hist, 0.0);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, HistEven, testing::Combine(
|
|
ALL_DEVICES,
|
|
DIFFERENT_SIZES));
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// CalcHist
|
|
|
|
PARAM_TEST_CASE(CalcHist, cv::cuda::DeviceInfo, cv::Size)
|
|
{
|
|
cv::cuda::DeviceInfo devInfo;
|
|
|
|
cv::Size size;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
size = GET_PARAM(1);
|
|
|
|
cv::cuda::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
CUDA_TEST_P(CalcHist, Accuracy)
|
|
{
|
|
cv::Mat src = randomMat(size, CV_8UC1);
|
|
|
|
cv::cuda::GpuMat hist;
|
|
cv::cuda::calcHist(loadMat(src), hist);
|
|
|
|
cv::Mat hist_gold;
|
|
|
|
const int hbins = 256;
|
|
const float hranges[] = {0.0f, 256.0f};
|
|
const int histSize[] = {hbins};
|
|
const float* ranges[] = {hranges};
|
|
const int channels[] = {0};
|
|
|
|
cv::calcHist(&src, 1, channels, cv::Mat(), hist_gold, 1, histSize, ranges);
|
|
hist_gold = hist_gold.reshape(1, 1);
|
|
hist_gold.convertTo(hist_gold, CV_32S);
|
|
|
|
EXPECT_MAT_NEAR(hist_gold, hist, 0.0);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, CalcHist, testing::Combine(
|
|
ALL_DEVICES,
|
|
DIFFERENT_SIZES));
|
|
|
|
PARAM_TEST_CASE(CalcHistWithMask, cv::cuda::DeviceInfo, cv::Size)
|
|
{
|
|
cv::cuda::DeviceInfo devInfo;
|
|
|
|
cv::Size size;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
size = GET_PARAM(1);
|
|
|
|
cv::cuda::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
CUDA_TEST_P(CalcHistWithMask, Accuracy)
|
|
{
|
|
cv::Mat src = randomMat(size, CV_8UC1);
|
|
cv::Mat mask = randomMat(size, CV_8UC1);
|
|
cv::Mat(mask, cv::Rect(0, 0, size.width / 2, size.height / 2)).setTo(0);
|
|
|
|
cv::cuda::GpuMat hist;
|
|
cv::cuda::calcHist(loadMat(src), loadMat(mask), hist);
|
|
|
|
cv::Mat hist_gold;
|
|
|
|
const int hbins = 256;
|
|
const float hranges[] = {0.0f, 256.0f};
|
|
const int histSize[] = {hbins};
|
|
const float* ranges[] = {hranges};
|
|
const int channels[] = {0};
|
|
|
|
cv::calcHist(&src, 1, channels, mask, hist_gold, 1, histSize, ranges);
|
|
hist_gold = hist_gold.reshape(1, 1);
|
|
hist_gold.convertTo(hist_gold, CV_32S);
|
|
|
|
EXPECT_MAT_NEAR(hist_gold, hist, 0.0);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, CalcHistWithMask, testing::Combine(
|
|
ALL_DEVICES,
|
|
DIFFERENT_SIZES));
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// EqualizeHist
|
|
|
|
PARAM_TEST_CASE(EqualizeHist, cv::cuda::DeviceInfo, cv::Size)
|
|
{
|
|
cv::cuda::DeviceInfo devInfo;
|
|
cv::Size size;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
size = GET_PARAM(1);
|
|
|
|
cv::cuda::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
CUDA_TEST_P(EqualizeHist, Async)
|
|
{
|
|
cv::Mat src = randomMat(size, CV_8UC1);
|
|
|
|
cv::cuda::Stream stream;
|
|
|
|
cv::cuda::GpuMat dst;
|
|
cv::cuda::equalizeHist(loadMat(src), dst, stream);
|
|
|
|
stream.waitForCompletion();
|
|
|
|
cv::Mat dst_gold;
|
|
cv::equalizeHist(src, dst_gold);
|
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
|
}
|
|
|
|
CUDA_TEST_P(EqualizeHist, Accuracy)
|
|
{
|
|
cv::Mat src = randomMat(size, CV_8UC1);
|
|
|
|
cv::cuda::GpuMat dst;
|
|
cv::cuda::equalizeHist(loadMat(src), dst);
|
|
|
|
cv::Mat dst_gold;
|
|
cv::equalizeHist(src, dst_gold);
|
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, EqualizeHist, testing::Combine(
|
|
ALL_DEVICES,
|
|
DIFFERENT_SIZES));
|
|
|
|
TEST(EqualizeHistIssue, Issue18035)
|
|
{
|
|
std::vector<std::string> imgPaths;
|
|
imgPaths.push_back(std::string(cvtest::TS::ptr()->get_data_path()) + "../cv/shared/3MP.png");
|
|
imgPaths.push_back(std::string(cvtest::TS::ptr()->get_data_path()) + "../cv/shared/5MP.png");
|
|
imgPaths.push_back(std::string(cvtest::TS::ptr()->get_data_path()) + "../cv/shared/airplane.png");
|
|
imgPaths.push_back(std::string(cvtest::TS::ptr()->get_data_path()) + "../cv/shared/baboon.png");
|
|
imgPaths.push_back(std::string(cvtest::TS::ptr()->get_data_path()) + "../cv/shared/box.png");
|
|
imgPaths.push_back(std::string(cvtest::TS::ptr()->get_data_path()) + "../cv/shared/box_in_scene.png");
|
|
imgPaths.push_back(std::string(cvtest::TS::ptr()->get_data_path()) + "../cv/shared/fruits.png");
|
|
imgPaths.push_back(std::string(cvtest::TS::ptr()->get_data_path()) + "../cv/shared/fruits_ecc.png");
|
|
imgPaths.push_back(std::string(cvtest::TS::ptr()->get_data_path()) + "../cv/shared/graffiti.png");
|
|
imgPaths.push_back(std::string(cvtest::TS::ptr()->get_data_path()) + "../cv/shared/lena.png");
|
|
|
|
for (size_t i = 0; i < imgPaths.size(); ++i)
|
|
{
|
|
std::string imgPath = imgPaths[i];
|
|
cv::Mat src = cv::imread(imgPath, cv::IMREAD_GRAYSCALE);
|
|
src = src / 30;
|
|
|
|
cv::cuda::GpuMat d_src, dst;
|
|
d_src.upload(src);
|
|
cv::cuda::equalizeHist(d_src, dst);
|
|
|
|
cv::Mat dst_gold;
|
|
cv::equalizeHist(src, dst_gold);
|
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
|
}
|
|
}
|
|
|
|
PARAM_TEST_CASE(EqualizeHistExtreme, cv::cuda::DeviceInfo, cv::Size, int)
|
|
{
|
|
cv::cuda::DeviceInfo devInfo;
|
|
cv::Size size;
|
|
int val;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
size = GET_PARAM(1);
|
|
val = GET_PARAM(2);
|
|
|
|
cv::cuda::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
CUDA_TEST_P(EqualizeHistExtreme, Case1)
|
|
{
|
|
cv::Mat src(size, CV_8UC1, val);
|
|
|
|
cv::cuda::GpuMat dst;
|
|
cv::cuda::equalizeHist(loadMat(src), dst);
|
|
|
|
cv::Mat dst_gold;
|
|
cv::equalizeHist(src, dst_gold);
|
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
|
}
|
|
|
|
CUDA_TEST_P(EqualizeHistExtreme, Case2)
|
|
{
|
|
cv::Mat src = randomMat(size, CV_8UC1, val);
|
|
|
|
cv::cuda::GpuMat dst;
|
|
cv::cuda::equalizeHist(loadMat(src), dst);
|
|
|
|
cv::Mat dst_gold;
|
|
cv::equalizeHist(src, dst_gold);
|
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, EqualizeHistExtreme, testing::Combine(
|
|
ALL_DEVICES,
|
|
DIFFERENT_SIZES,
|
|
testing::Range(0, 256)));
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// CLAHE
|
|
|
|
namespace
|
|
{
|
|
IMPLEMENT_PARAM_CLASS(ClipLimit, double)
|
|
}
|
|
|
|
PARAM_TEST_CASE(CLAHE, cv::cuda::DeviceInfo, cv::Size, ClipLimit, MatType)
|
|
{
|
|
cv::cuda::DeviceInfo devInfo;
|
|
cv::Size size;
|
|
double clipLimit;
|
|
int type;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
size = GET_PARAM(1);
|
|
clipLimit = GET_PARAM(2);
|
|
type = GET_PARAM(3);
|
|
|
|
cv::cuda::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
CUDA_TEST_P(CLAHE, Accuracy)
|
|
{
|
|
cv::Mat src;
|
|
if (type == CV_8UC1)
|
|
src = randomMat(size, type);
|
|
else if (type == CV_16UC1)
|
|
src = randomMat(size, type, 0, 65535);
|
|
|
|
cv::Ptr<cv::cuda::CLAHE> clahe = cv::cuda::createCLAHE(clipLimit);
|
|
cv::cuda::GpuMat dst;
|
|
clahe->apply(loadMat(src), dst);
|
|
|
|
cv::Ptr<cv::CLAHE> clahe_gold = cv::createCLAHE(clipLimit);
|
|
cv::Mat dst_gold;
|
|
clahe_gold->apply(src, dst_gold);
|
|
|
|
ASSERT_MAT_NEAR(dst_gold, dst, 1.0);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, CLAHE, testing::Combine(
|
|
ALL_DEVICES,
|
|
DIFFERENT_SIZES,
|
|
testing::Values(0.0, 5.0, 10.0, 20.0, 40.0),
|
|
testing::Values(MatType(CV_8UC1), MatType(CV_16UC1))));
|
|
|
|
|
|
}} // namespace
|
|
#endif // HAVE_CUDA
|