mirror of
https://github.com/opencv/opencv.git
synced 2024-11-25 03:30:34 +08:00
267 lines
11 KiB
TeX
267 lines
11 KiB
TeX
\section{Object Detection}
|
|
|
|
\cvclass{gpu::HOGDescriptor}
|
|
Histogram of Oriented Gradients \cite{dalal_hog} descriptor and detector.
|
|
|
|
\begin{lstlisting}
|
|
struct CV_EXPORTS HOGDescriptor
|
|
{
|
|
enum { DEFAULT_WIN_SIGMA = -1 };
|
|
enum { DEFAULT_NLEVELS = 64 };
|
|
enum { DESCR_FORMAT_ROW_BY_ROW, DESCR_FORMAT_COL_BY_COL };
|
|
|
|
HOGDescriptor(Size win_size=Size(64, 128), Size block_size=Size(16, 16),
|
|
Size block_stride=Size(8, 8), Size cell_size=Size(8, 8),
|
|
int nbins=9, double win_sigma=DEFAULT_WIN_SIGMA,
|
|
double threshold_L2hys=0.2, bool gamma_correction=true,
|
|
int nlevels=DEFAULT_NLEVELS);
|
|
|
|
size_t getDescriptorSize() const;
|
|
size_t getBlockHistogramSize() const;
|
|
|
|
void setSVMDetector(const vector<float>& detector);
|
|
|
|
static vector<float> getDefaultPeopleDetector();
|
|
static vector<float> getPeopleDetector48x96();
|
|
static vector<float> getPeopleDetector64x128();
|
|
|
|
void detect(const GpuMat& img, vector<Point>& found_locations,
|
|
double hit_threshold=0, Size win_stride=Size(),
|
|
Size padding=Size());
|
|
|
|
void detectMultiScale(const GpuMat& img, vector<Rect>& found_locations,
|
|
double hit_threshold=0, Size win_stride=Size(),
|
|
Size padding=Size(), double scale0=1.05,
|
|
int group_threshold=2);
|
|
|
|
void getDescriptors(const GpuMat& img, Size win_stride,
|
|
GpuMat& descriptors,
|
|
int descr_format=DESCR_FORMAT_COL_BY_COL);
|
|
|
|
Size win_size;
|
|
Size block_size;
|
|
Size block_stride;
|
|
Size cell_size;
|
|
int nbins;
|
|
double win_sigma;
|
|
double threshold_L2hys;
|
|
bool gamma_correction;
|
|
int nlevels;
|
|
|
|
private:
|
|
// Hidden
|
|
}
|
|
\end{lstlisting}
|
|
|
|
Interfaces of all methods are kept similar to CPU HOG descriptor and detector analogues as much as possible.
|
|
|
|
|
|
\cvCppFunc{gpu::HOGDescriptor::HOGDescriptor}
|
|
Creates HOG descriptor and detector.
|
|
|
|
\cvdefCpp{HOGDescriptor::HOGDescriptor(Size win\_size=Size(64, 128),\par
|
|
Size block\_size=Size(16, 16), Size block\_stride=Size(8, 8),\par
|
|
Size cell\_size=Size(8, 8), int nbins=9,\par
|
|
double win\_sigma=DEFAULT\_WIN\_SIGMA,\par
|
|
double threshold\_L2hys=0.2, bool gamma\_correction=true,\par
|
|
int nlevels=DEFAULT\_NLEVELS);}
|
|
|
|
\begin{description}
|
|
\cvarg{win\_size}{Detection window size. Must be aligned to block size and block stride.}
|
|
\cvarg{block\_size}{Block size in pixels. Must be aligned to cell size. Only (16,16) is supported for now.}
|
|
\cvarg{block\_stride}{Block stride. Must be a multiple of cell size.}
|
|
\cvarg{cell\_size}{Cell size. Only (8, 8) is supported for now.}
|
|
\cvarg{nbins}{Number of bins. Only 9 bins per cell is supported for now.}
|
|
\cvarg{win\_sigma}{Gaussian smoothing window parameter.}
|
|
\cvarg{threshold\_L2Hys}{L2-Hys normalization method shrinkage.}
|
|
\cvarg{gamma\_correction}{Do gamma correction preprocessing or not.}
|
|
\cvarg{nlevels}{Maximum number of detection window increases.}
|
|
\end{description}
|
|
|
|
|
|
\cvCppFunc{gpu::HOGDescriptor::getDescriptorSize}
|
|
Returns number of coefficients required for the classification.
|
|
|
|
\cvdefCpp{size\_t HOGDescriptor::getDescriptorSize() const;}
|
|
|
|
|
|
\cvCppFunc{gpu::HOGDescriptor::getBlockHistogramSize}
|
|
Returns block histogram size.
|
|
|
|
\cvdefCpp{size\_t HOGDescriptor::getBlockHistogramSize() const;}
|
|
|
|
|
|
\cvCppFunc{gpu::HOGDescriptor::setSVMDetector}
|
|
Sets coefficients for the linear SVM classifier.
|
|
|
|
\cvdefCpp{void HOGDescriptor::setSVMDetector(const vector<float>\& detector);}
|
|
|
|
|
|
\cvCppFunc{gpu::HOGDescriptor::getDefaultPeopleDetector}
|
|
Returns coefficients of the classifier trained for people detection (for default window size).
|
|
|
|
\cvdefCpp{static vector<float> HOGDescriptor::getDefaultPeopleDetector();}
|
|
|
|
|
|
\cvCppFunc{gpu::HOGDescriptor::getPeopleDetector48x96}
|
|
Returns coefficients of the classifier trained for people detection (for 48x96 windows).
|
|
|
|
\cvdefCpp{static vector<float> HOGDescriptor::getPeopleDetector48x96();}
|
|
|
|
|
|
\cvCppFunc{gpu::HOGDescriptor::getPeopleDetector64x128}
|
|
Returns coefficients of the classifier trained for people detection (for 64x128 windows).
|
|
|
|
\cvdefCpp{static vector<float> HOGDescriptor::getPeopleDetector64x128();}
|
|
|
|
|
|
\cvCppFunc{gpu::HOGDescriptor::detect}
|
|
Perfroms object detection without multiscale window.
|
|
|
|
\cvdefCpp{void HOGDescriptor::detect(const GpuMat\& img,\par
|
|
vector<Point>\& found\_locations, double hit\_threshold=0,\par
|
|
Size win\_stride=Size(), Size padding=Size());}
|
|
|
|
\begin{description}
|
|
\cvarg{img}{Source image. \texttt{CV\_8UC1} and \texttt{CV\_8UC4}types are supported for now.}
|
|
\cvarg{found\_locations}{Will contain left-top corner points of detected objects boundaries.}
|
|
\cvarg{hit\_threshold}{Threshold for the distance between features and SVM classifying plane. Usually it's 0 and should be specfied in the detector coefficients (as the last free coefficient), but if the free coefficient is omitted (it's allowed) you can specify it manually here.}
|
|
\cvarg{win\_stride}{Window stride. Must be a multiple of block stride.}
|
|
\cvarg{padding}{Mock parameter to keep CPU interface compatibility. Must be (0,0).}
|
|
\end{description}
|
|
|
|
|
|
\cvCppFunc{gpu::HOGDescriptor::detectMultiScale}
|
|
Perfroms object detection with multiscale window.
|
|
|
|
\cvdefCpp{void HOGDescriptor::detectMultiScale(const GpuMat\& img,\par
|
|
vector<Rect>\& found\_locations, double hit\_threshold=0,\par
|
|
Size win\_stride=Size(), Size padding=Size(),\par
|
|
double scale0=1.05, int group\_threshold=2);}
|
|
|
|
\begin{description}
|
|
\cvarg{img}{Source image. See \cvCppCross{gpu::HOGDescriptor::detect} for type limitations.}
|
|
\cvarg{found\_locations}{Will contain detected objects boundaries.}
|
|
\cvarg{hit\_threshold}{The threshold for the distance between features and SVM classifying plane. See \cvCppCross{gpu::HOGDescriptor::detect} for details.}
|
|
\cvarg{win\_stride}{Window stride. Must be a multiple of block stride.}
|
|
\cvarg{padding}{Mock parameter to keep CPU interface compatibility. Must be (0,0).}
|
|
\cvarg{scale0}{Coefficient of the detection window increase.}
|
|
\cvarg{group\_threshold}{After detection some objects could be covered by many rectangles. This coefficient regulates similarity threshold. 0 means don't perform grouping.\newline
|
|
See \cvCppCross{groupRectangles}.}
|
|
\end{description}
|
|
|
|
|
|
\cvCppFunc{gpu::HOGDescriptor::getDescriptors}
|
|
Returns block descriptors computed for the whole image. It's mainly used for classifier learning purposes.
|
|
|
|
\cvdefCpp{void HOGDescriptor::getDescriptors(const GpuMat\& img,\par
|
|
Size win\_stride, GpuMat\& descriptors,\par
|
|
int descr\_format=DESCR\_FORMAT\_COL\_BY\_COL);}
|
|
|
|
\begin{description}
|
|
\cvarg{img}{Source image. See \cvCppCross{gpu::HOGDescriptor::detect} for type limitations.}
|
|
\cvarg{win\_stride}{Window stride. Must be a multiple of block stride.}
|
|
\cvarg{descriptors}{2D array of descriptors.}
|
|
\cvarg{descr\_format}{Descriptor storage format:
|
|
\begin{description}
|
|
\cvarg{DESCR\_FORMAT\_ROW\_BY\_ROW}{Row-major order.}
|
|
\cvarg{DESCR\_FORMAT\_COL\_BY\_COL}{Column-major order.}
|
|
\end{description}}
|
|
\end{description}
|
|
|
|
|
|
\cvclass{gpu::CascadeClassifier\_GPU}
|
|
The cascade classifier class for object detection.
|
|
|
|
\begin{lstlisting}
|
|
class CV_EXPORTS CascadeClassifier_GPU
|
|
{
|
|
public:
|
|
CascadeClassifier_GPU();
|
|
CascadeClassifier_GPU(const string& filename);
|
|
~CascadeClassifier_GPU();
|
|
|
|
bool empty() const;
|
|
bool load(const string& filename);
|
|
void release();
|
|
|
|
/* returns number of detected objects */
|
|
int detectMultiScale( const GpuMat& image, GpuMat& objectsBuf, double scaleFactor=1.2, int minNeighbors=4, Size minSize=Size());
|
|
|
|
/* Finds only the largest object. Special mode for need to training*/
|
|
bool findLargestObject;
|
|
|
|
/* Draws rectangles in input image */
|
|
bool visualizeInPlace;
|
|
|
|
Size getClassifierSize() const;
|
|
};
|
|
\end{lstlisting}
|
|
|
|
\cvfunc{cv::gpu::CascadeClassifier\_GPU::CascadeClassifier\_GPU}\par
|
|
Loads the classifier from file.
|
|
\cvdefCpp{cv::CascadeClassifier\_GPU(const string\& filename);}
|
|
\begin{description}
|
|
\cvarg{filename}{Name of file from which classifier will be load. Only old haar classifier (trained by haartraining application) and NVidia's nvbin are supported.}
|
|
\end{description}
|
|
|
|
\cvfunc{cv::gpu::CascadeClassifier\_GPU::empty}
|
|
Checks if the classifier has been loaded or not.
|
|
\cvdefCpp{bool CascadeClassifier\_GPU::empty() const;}
|
|
|
|
|
|
\cvfunc{cv::gpu::CascadeClassifier\_GPU::load}
|
|
Loads the classifier from file. The previous content is destroyed.
|
|
\cvdefCpp{bool CascadeClassifier\_GPU::load(const string\& filename);}
|
|
\begin{description}
|
|
\cvarg{filename}{Name of file from which classifier will be load. Only old haar classifier (trained by haartraining application) and NVidia's nvbin are supported.}
|
|
\end{description}
|
|
|
|
|
|
\cvfunc{cv::gpu::CascadeClassifier\_GPU::release}
|
|
Destroys loaded classifier.
|
|
\cvdefCpp{void CascadeClassifier\_GPU::release()}
|
|
|
|
|
|
|
|
\cvfunc{cv::gpu::CascadeClassifier\_GPU::detectMultiScale}
|
|
Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.
|
|
|
|
\cvdefCpp{int CascadeClassifier\_GPU::detectMultiScale(const GpuMat\& image, GpuMat\& objectsBuf, double scaleFactor=1.2, int minNeighbors=4, Size minSize=Size());}
|
|
\begin{description}
|
|
\cvarg{image}{Matrix of type \texttt{CV\_8U} containing the image in which to detect objects.}
|
|
\cvarg{objects}{Buffer to store detected objects (rectangles). If it is empty, it will be allocated with default size. If not empty, function will search not more than N objects, where N = sizeof(objectsBufer's data)/sizeof(cv::Rect).}
|
|
\cvarg{scaleFactor}{Specifies how much the image size is reduced at each image scale.}
|
|
\cvarg{minNeighbors}{Specifies how many neighbors should each candidate rectangle have to retain it.}
|
|
\cvarg{minSize}{The minimum possible object size. Objects smaller than that are ignored.}
|
|
\end{description}
|
|
|
|
The function returns number of detected objects, so you can retrieve them as in following example:
|
|
|
|
\begin{lstlisting}
|
|
|
|
cv::gpu::CascadeClassifier_GPU cascade_gpu(...);
|
|
|
|
Mat image_cpu = imread(...)
|
|
GpuMat image_gpu(image_cpu);
|
|
|
|
GpuMat objbuf;
|
|
int detections_number = cascade_gpu.detectMultiScale( image_gpu,
|
|
objbuf, 1.2, minNeighbors);
|
|
|
|
Mat obj_host;
|
|
// download only detected number of rectangles
|
|
objbuf.colRange(0, detections_number).download(obj_host);
|
|
|
|
Rect* faces = obj_host.ptr<Rect>();
|
|
for(int i = 0; i < detections_num; ++i)
|
|
cv::rectangle(image_cpu, faces[i], Scalar(255));
|
|
|
|
imshow("Faces", image_cpu);
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
See also: \cvCppCross{CascadeClassifier::detectMultiScale}.
|
|
|